RCoCo: Contrastive Collective Link Prediction across Multiplex Network in Riemannian Space
Abstract: Link prediction typically studies the probability of future interconnection among nodes with the observation in a single social network. More often than not, real scenario is presented as a multiplex network with common (anchor) users active in multiple social networks. In the literature, most existing works study either the intra-link prediction in a single network or inter-link prediction among networks (a.k.a. network alignment), and consider two learning tasks are independent from each other, which is still away from the fact. On the representation space, the vast majority of existing methods are built upon the traditional Euclidean space, unaware of the inherent geometry of social networks. The third issue is on the scarce anchor users. Annotating anchor users is laborious and expensive, and thus it is impractical to work with quantities of anchor users. Herein, in light of the issues above, we propose to study a challenging yet practical problem of Geometry-aware Collective Link Prediction across Multiplex Network. To address this problem, we present a novel contrastive model, RCoCo, which collaborates intra- and inter-network behaviors in Riemannian spaces. In RCoCo, we design a curvature-aware graph attention network ($\kappa-$GAT), conducting attention mechanism in Riemannian manifold whose curvature is estimated by the Ricci curvatures over the network. Thereafter, we formulate intra- and inter-contrastive loss in the manifolds, in which we augment graphs by exploring the high-order structure of community and information transfer on anchor users. Finally, we conduct extensive experiments with 14 strong baselines on 8 real-world datasets, and show the effectiveness of RCoCo.
- Grover, A., Leskovec, J.: node2vec: Scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD, pp. 855–864 (2016) Velickovic et al. [2018] Velickovic, P., Fedus, W., Hamilton, W.L., Liò, P., Bengio, Y., Hjelm, R.D.: Deep graph infomax. CoRR abs/1809.10341 (2018) Fang et al. [2023] Fang, Z., Tan, S., Wang, Y., Lü, J.: Elementary subgraph features for link prediction with neural networks. IEEE Trans. Knowl. Data Eng. 35(4), 3822–3831 (2023) Wu et al. [2021] Wu, W., Li, B., Luo, C., Nejdl, W.: Hashing-accelerated graph neural networks for link prediction. In: Proceedings of the Web Conference 2021, WWW, pp. 2910–2920 (2021) Liu et al. [2023] Liu, N., Wang, X., Han, H., Shi, C.: Hierarchical contrastive learning enhanced heterogeneous graph neural network. IEEE Trans. Knowl. Data Eng. 35(10), 10884–10896 (2023) Chen et al. [2021] Chen, H., Li, Y., Shi, S., Liu, S., Zhu, H., Zhang, Y.: Graph collaborative reasoning. CoRR abs/2112.13705 (2021) Chen et al. [2020] Chen, H., Yin, H., Sun, X., Chen, T., Gabrys, B., Musial, K.: Multi-level graph convolutional networks for cross-platform anchor link prediction. In: Proceedings of the 26th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 1503–1511 (2020) Mu et al. [2016] Mu, X., Zhu, F., Lim, E., Xiao, J., Wang, J., Zhou, Z.: User identity linkage by latent user space modelling. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD, pp. 1775–1784 (2016) Kong et al. [2013] Kong, X., Zhang, J., Yu, P.S.: Inferring anchor links across multiple heterogeneous social networks. In: Proceedings of the 22nd ACM International Conference on Information and Knowledge Management, CIKM’13, CIKM, pp. 179–188 (2013) Zhan et al. [2019] Zhan, Q., Zhang, J., Yu, P.S.: Integrated anchor and social link predictions across multiple social networks. Knowl. Inf. Syst. 60(1), 303–326 (2019) Zhang and Tong [2016] Zhang, S., Tong, H.: FINAL: fast attributed network alignment. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD, pp. 1345–1354 (2016) Bayati et al. [2009] Bayati, M., Gerritsen, M., Gleich, D.F., Saberi, A., Wang, Y.: Algorithms for large, sparse network alignment problems. In: Proceedings of the Ninth IEEE International Conference on Data Mining, ICDM, pp. 705–710 (2009) Wang et al. [2020] Wang, F., Sun, L., Zhang, Z.: Hyperbolic user identity linkage across social networks. In: Proceedings of the Global Communications Conference, GLOBECOM 2020, IEEE, pp. 1–6 (2020) Sun et al. [2020] Sun, L., Zhang, Z., Zhang, J., Wang, F., Du, Y., Su, S., Yu, P.S.: Perfect: A hyperbolic embedding for joint user and community alignment. In: Proceedings of the 20th IEEE International Conference on Data Mining, ICDM, pp. 501–510 (2020) Sun et al. [2022] Sun, L., Ye, J., Peng, H., Yu, P.S.: A self-supervised riemannian GNN with time varying curvature for temporal graph learning. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pp. 1827–1836 (2022) Bai et al. [2023] Bai, Q., Nie, C., Zhang, H., Zhao, D., Yuan, X.: Hgwavenet: A hyperbolic graph neural network for temporal link prediction. In: Proceedings of the ACM Web Conference 2023, WWW, pp. 523–532 (2023) Petersen [2006] Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Velickovic, P., Fedus, W., Hamilton, W.L., Liò, P., Bengio, Y., Hjelm, R.D.: Deep graph infomax. CoRR abs/1809.10341 (2018) Fang et al. [2023] Fang, Z., Tan, S., Wang, Y., Lü, J.: Elementary subgraph features for link prediction with neural networks. IEEE Trans. Knowl. Data Eng. 35(4), 3822–3831 (2023) Wu et al. [2021] Wu, W., Li, B., Luo, C., Nejdl, W.: Hashing-accelerated graph neural networks for link prediction. In: Proceedings of the Web Conference 2021, WWW, pp. 2910–2920 (2021) Liu et al. [2023] Liu, N., Wang, X., Han, H., Shi, C.: Hierarchical contrastive learning enhanced heterogeneous graph neural network. IEEE Trans. Knowl. Data Eng. 35(10), 10884–10896 (2023) Chen et al. [2021] Chen, H., Li, Y., Shi, S., Liu, S., Zhu, H., Zhang, Y.: Graph collaborative reasoning. CoRR abs/2112.13705 (2021) Chen et al. [2020] Chen, H., Yin, H., Sun, X., Chen, T., Gabrys, B., Musial, K.: Multi-level graph convolutional networks for cross-platform anchor link prediction. In: Proceedings of the 26th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 1503–1511 (2020) Mu et al. [2016] Mu, X., Zhu, F., Lim, E., Xiao, J., Wang, J., Zhou, Z.: User identity linkage by latent user space modelling. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD, pp. 1775–1784 (2016) Kong et al. [2013] Kong, X., Zhang, J., Yu, P.S.: Inferring anchor links across multiple heterogeneous social networks. In: Proceedings of the 22nd ACM International Conference on Information and Knowledge Management, CIKM’13, CIKM, pp. 179–188 (2013) Zhan et al. [2019] Zhan, Q., Zhang, J., Yu, P.S.: Integrated anchor and social link predictions across multiple social networks. Knowl. Inf. Syst. 60(1), 303–326 (2019) Zhang and Tong [2016] Zhang, S., Tong, H.: FINAL: fast attributed network alignment. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD, pp. 1345–1354 (2016) Bayati et al. [2009] Bayati, M., Gerritsen, M., Gleich, D.F., Saberi, A., Wang, Y.: Algorithms for large, sparse network alignment problems. In: Proceedings of the Ninth IEEE International Conference on Data Mining, ICDM, pp. 705–710 (2009) Wang et al. [2020] Wang, F., Sun, L., Zhang, Z.: Hyperbolic user identity linkage across social networks. In: Proceedings of the Global Communications Conference, GLOBECOM 2020, IEEE, pp. 1–6 (2020) Sun et al. [2020] Sun, L., Zhang, Z., Zhang, J., Wang, F., Du, Y., Su, S., Yu, P.S.: Perfect: A hyperbolic embedding for joint user and community alignment. In: Proceedings of the 20th IEEE International Conference on Data Mining, ICDM, pp. 501–510 (2020) Sun et al. [2022] Sun, L., Ye, J., Peng, H., Yu, P.S.: A self-supervised riemannian GNN with time varying curvature for temporal graph learning. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pp. 1827–1836 (2022) Bai et al. [2023] Bai, Q., Nie, C., Zhang, H., Zhao, D., Yuan, X.: Hgwavenet: A hyperbolic graph neural network for temporal link prediction. In: Proceedings of the ACM Web Conference 2023, WWW, pp. 523–532 (2023) Petersen [2006] Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Fang, Z., Tan, S., Wang, Y., Lü, J.: Elementary subgraph features for link prediction with neural networks. IEEE Trans. Knowl. Data Eng. 35(4), 3822–3831 (2023) Wu et al. [2021] Wu, W., Li, B., Luo, C., Nejdl, W.: Hashing-accelerated graph neural networks for link prediction. In: Proceedings of the Web Conference 2021, WWW, pp. 2910–2920 (2021) Liu et al. [2023] Liu, N., Wang, X., Han, H., Shi, C.: Hierarchical contrastive learning enhanced heterogeneous graph neural network. IEEE Trans. Knowl. Data Eng. 35(10), 10884–10896 (2023) Chen et al. [2021] Chen, H., Li, Y., Shi, S., Liu, S., Zhu, H., Zhang, Y.: Graph collaborative reasoning. CoRR abs/2112.13705 (2021) Chen et al. [2020] Chen, H., Yin, H., Sun, X., Chen, T., Gabrys, B., Musial, K.: Multi-level graph convolutional networks for cross-platform anchor link prediction. In: Proceedings of the 26th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 1503–1511 (2020) Mu et al. [2016] Mu, X., Zhu, F., Lim, E., Xiao, J., Wang, J., Zhou, Z.: User identity linkage by latent user space modelling. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD, pp. 1775–1784 (2016) Kong et al. [2013] Kong, X., Zhang, J., Yu, P.S.: Inferring anchor links across multiple heterogeneous social networks. In: Proceedings of the 22nd ACM International Conference on Information and Knowledge Management, CIKM’13, CIKM, pp. 179–188 (2013) Zhan et al. [2019] Zhan, Q., Zhang, J., Yu, P.S.: Integrated anchor and social link predictions across multiple social networks. Knowl. Inf. Syst. 60(1), 303–326 (2019) Zhang and Tong [2016] Zhang, S., Tong, H.: FINAL: fast attributed network alignment. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD, pp. 1345–1354 (2016) Bayati et al. [2009] Bayati, M., Gerritsen, M., Gleich, D.F., Saberi, A., Wang, Y.: Algorithms for large, sparse network alignment problems. In: Proceedings of the Ninth IEEE International Conference on Data Mining, ICDM, pp. 705–710 (2009) Wang et al. [2020] Wang, F., Sun, L., Zhang, Z.: Hyperbolic user identity linkage across social networks. In: Proceedings of the Global Communications Conference, GLOBECOM 2020, IEEE, pp. 1–6 (2020) Sun et al. [2020] Sun, L., Zhang, Z., Zhang, J., Wang, F., Du, Y., Su, S., Yu, P.S.: Perfect: A hyperbolic embedding for joint user and community alignment. In: Proceedings of the 20th IEEE International Conference on Data Mining, ICDM, pp. 501–510 (2020) Sun et al. [2022] Sun, L., Ye, J., Peng, H., Yu, P.S.: A self-supervised riemannian GNN with time varying curvature for temporal graph learning. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pp. 1827–1836 (2022) Bai et al. [2023] Bai, Q., Nie, C., Zhang, H., Zhao, D., Yuan, X.: Hgwavenet: A hyperbolic graph neural network for temporal link prediction. In: Proceedings of the ACM Web Conference 2023, WWW, pp. 523–532 (2023) Petersen [2006] Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Wu, W., Li, B., Luo, C., Nejdl, W.: Hashing-accelerated graph neural networks for link prediction. In: Proceedings of the Web Conference 2021, WWW, pp. 2910–2920 (2021) Liu et al. [2023] Liu, N., Wang, X., Han, H., Shi, C.: Hierarchical contrastive learning enhanced heterogeneous graph neural network. IEEE Trans. Knowl. Data Eng. 35(10), 10884–10896 (2023) Chen et al. [2021] Chen, H., Li, Y., Shi, S., Liu, S., Zhu, H., Zhang, Y.: Graph collaborative reasoning. CoRR abs/2112.13705 (2021) Chen et al. [2020] Chen, H., Yin, H., Sun, X., Chen, T., Gabrys, B., Musial, K.: Multi-level graph convolutional networks for cross-platform anchor link prediction. In: Proceedings of the 26th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 1503–1511 (2020) Mu et al. [2016] Mu, X., Zhu, F., Lim, E., Xiao, J., Wang, J., Zhou, Z.: User identity linkage by latent user space modelling. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD, pp. 1775–1784 (2016) Kong et al. [2013] Kong, X., Zhang, J., Yu, P.S.: Inferring anchor links across multiple heterogeneous social networks. In: Proceedings of the 22nd ACM International Conference on Information and Knowledge Management, CIKM’13, CIKM, pp. 179–188 (2013) Zhan et al. [2019] Zhan, Q., Zhang, J., Yu, P.S.: Integrated anchor and social link predictions across multiple social networks. Knowl. Inf. Syst. 60(1), 303–326 (2019) Zhang and Tong [2016] Zhang, S., Tong, H.: FINAL: fast attributed network alignment. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD, pp. 1345–1354 (2016) Bayati et al. [2009] Bayati, M., Gerritsen, M., Gleich, D.F., Saberi, A., Wang, Y.: Algorithms for large, sparse network alignment problems. In: Proceedings of the Ninth IEEE International Conference on Data Mining, ICDM, pp. 705–710 (2009) Wang et al. [2020] Wang, F., Sun, L., Zhang, Z.: Hyperbolic user identity linkage across social networks. In: Proceedings of the Global Communications Conference, GLOBECOM 2020, IEEE, pp. 1–6 (2020) Sun et al. [2020] Sun, L., Zhang, Z., Zhang, J., Wang, F., Du, Y., Su, S., Yu, P.S.: Perfect: A hyperbolic embedding for joint user and community alignment. In: Proceedings of the 20th IEEE International Conference on Data Mining, ICDM, pp. 501–510 (2020) Sun et al. [2022] Sun, L., Ye, J., Peng, H., Yu, P.S.: A self-supervised riemannian GNN with time varying curvature for temporal graph learning. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pp. 1827–1836 (2022) Bai et al. [2023] Bai, Q., Nie, C., Zhang, H., Zhao, D., Yuan, X.: Hgwavenet: A hyperbolic graph neural network for temporal link prediction. In: Proceedings of the ACM Web Conference 2023, WWW, pp. 523–532 (2023) Petersen [2006] Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, N., Wang, X., Han, H., Shi, C.: Hierarchical contrastive learning enhanced heterogeneous graph neural network. IEEE Trans. Knowl. Data Eng. 35(10), 10884–10896 (2023) Chen et al. [2021] Chen, H., Li, Y., Shi, S., Liu, S., Zhu, H., Zhang, Y.: Graph collaborative reasoning. CoRR abs/2112.13705 (2021) Chen et al. [2020] Chen, H., Yin, H., Sun, X., Chen, T., Gabrys, B., Musial, K.: Multi-level graph convolutional networks for cross-platform anchor link prediction. In: Proceedings of the 26th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 1503–1511 (2020) Mu et al. [2016] Mu, X., Zhu, F., Lim, E., Xiao, J., Wang, J., Zhou, Z.: User identity linkage by latent user space modelling. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD, pp. 1775–1784 (2016) Kong et al. [2013] Kong, X., Zhang, J., Yu, P.S.: Inferring anchor links across multiple heterogeneous social networks. In: Proceedings of the 22nd ACM International Conference on Information and Knowledge Management, CIKM’13, CIKM, pp. 179–188 (2013) Zhan et al. [2019] Zhan, Q., Zhang, J., Yu, P.S.: Integrated anchor and social link predictions across multiple social networks. Knowl. Inf. Syst. 60(1), 303–326 (2019) Zhang and Tong [2016] Zhang, S., Tong, H.: FINAL: fast attributed network alignment. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD, pp. 1345–1354 (2016) Bayati et al. [2009] Bayati, M., Gerritsen, M., Gleich, D.F., Saberi, A., Wang, Y.: Algorithms for large, sparse network alignment problems. In: Proceedings of the Ninth IEEE International Conference on Data Mining, ICDM, pp. 705–710 (2009) Wang et al. [2020] Wang, F., Sun, L., Zhang, Z.: Hyperbolic user identity linkage across social networks. In: Proceedings of the Global Communications Conference, GLOBECOM 2020, IEEE, pp. 1–6 (2020) Sun et al. [2020] Sun, L., Zhang, Z., Zhang, J., Wang, F., Du, Y., Su, S., Yu, P.S.: Perfect: A hyperbolic embedding for joint user and community alignment. In: Proceedings of the 20th IEEE International Conference on Data Mining, ICDM, pp. 501–510 (2020) Sun et al. [2022] Sun, L., Ye, J., Peng, H., Yu, P.S.: A self-supervised riemannian GNN with time varying curvature for temporal graph learning. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pp. 1827–1836 (2022) Bai et al. [2023] Bai, Q., Nie, C., Zhang, H., Zhao, D., Yuan, X.: Hgwavenet: A hyperbolic graph neural network for temporal link prediction. In: Proceedings of the ACM Web Conference 2023, WWW, pp. 523–532 (2023) Petersen [2006] Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Chen, H., Li, Y., Shi, S., Liu, S., Zhu, H., Zhang, Y.: Graph collaborative reasoning. CoRR abs/2112.13705 (2021) Chen et al. [2020] Chen, H., Yin, H., Sun, X., Chen, T., Gabrys, B., Musial, K.: Multi-level graph convolutional networks for cross-platform anchor link prediction. In: Proceedings of the 26th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 1503–1511 (2020) Mu et al. [2016] Mu, X., Zhu, F., Lim, E., Xiao, J., Wang, J., Zhou, Z.: User identity linkage by latent user space modelling. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD, pp. 1775–1784 (2016) Kong et al. [2013] Kong, X., Zhang, J., Yu, P.S.: Inferring anchor links across multiple heterogeneous social networks. In: Proceedings of the 22nd ACM International Conference on Information and Knowledge Management, CIKM’13, CIKM, pp. 179–188 (2013) Zhan et al. [2019] Zhan, Q., Zhang, J., Yu, P.S.: Integrated anchor and social link predictions across multiple social networks. Knowl. Inf. Syst. 60(1), 303–326 (2019) Zhang and Tong [2016] Zhang, S., Tong, H.: FINAL: fast attributed network alignment. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD, pp. 1345–1354 (2016) Bayati et al. [2009] Bayati, M., Gerritsen, M., Gleich, D.F., Saberi, A., Wang, Y.: Algorithms for large, sparse network alignment problems. In: Proceedings of the Ninth IEEE International Conference on Data Mining, ICDM, pp. 705–710 (2009) Wang et al. [2020] Wang, F., Sun, L., Zhang, Z.: Hyperbolic user identity linkage across social networks. In: Proceedings of the Global Communications Conference, GLOBECOM 2020, IEEE, pp. 1–6 (2020) Sun et al. [2020] Sun, L., Zhang, Z., Zhang, J., Wang, F., Du, Y., Su, S., Yu, P.S.: Perfect: A hyperbolic embedding for joint user and community alignment. In: Proceedings of the 20th IEEE International Conference on Data Mining, ICDM, pp. 501–510 (2020) Sun et al. [2022] Sun, L., Ye, J., Peng, H., Yu, P.S.: A self-supervised riemannian GNN with time varying curvature for temporal graph learning. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pp. 1827–1836 (2022) Bai et al. [2023] Bai, Q., Nie, C., Zhang, H., Zhao, D., Yuan, X.: Hgwavenet: A hyperbolic graph neural network for temporal link prediction. In: Proceedings of the ACM Web Conference 2023, WWW, pp. 523–532 (2023) Petersen [2006] Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Chen, H., Yin, H., Sun, X., Chen, T., Gabrys, B., Musial, K.: Multi-level graph convolutional networks for cross-platform anchor link prediction. In: Proceedings of the 26th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 1503–1511 (2020) Mu et al. [2016] Mu, X., Zhu, F., Lim, E., Xiao, J., Wang, J., Zhou, Z.: User identity linkage by latent user space modelling. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD, pp. 1775–1784 (2016) Kong et al. [2013] Kong, X., Zhang, J., Yu, P.S.: Inferring anchor links across multiple heterogeneous social networks. In: Proceedings of the 22nd ACM International Conference on Information and Knowledge Management, CIKM’13, CIKM, pp. 179–188 (2013) Zhan et al. [2019] Zhan, Q., Zhang, J., Yu, P.S.: Integrated anchor and social link predictions across multiple social networks. Knowl. Inf. Syst. 60(1), 303–326 (2019) Zhang and Tong [2016] Zhang, S., Tong, H.: FINAL: fast attributed network alignment. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD, pp. 1345–1354 (2016) Bayati et al. [2009] Bayati, M., Gerritsen, M., Gleich, D.F., Saberi, A., Wang, Y.: Algorithms for large, sparse network alignment problems. In: Proceedings of the Ninth IEEE International Conference on Data Mining, ICDM, pp. 705–710 (2009) Wang et al. [2020] Wang, F., Sun, L., Zhang, Z.: Hyperbolic user identity linkage across social networks. In: Proceedings of the Global Communications Conference, GLOBECOM 2020, IEEE, pp. 1–6 (2020) Sun et al. [2020] Sun, L., Zhang, Z., Zhang, J., Wang, F., Du, Y., Su, S., Yu, P.S.: Perfect: A hyperbolic embedding for joint user and community alignment. In: Proceedings of the 20th IEEE International Conference on Data Mining, ICDM, pp. 501–510 (2020) Sun et al. [2022] Sun, L., Ye, J., Peng, H., Yu, P.S.: A self-supervised riemannian GNN with time varying curvature for temporal graph learning. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pp. 1827–1836 (2022) Bai et al. [2023] Bai, Q., Nie, C., Zhang, H., Zhao, D., Yuan, X.: Hgwavenet: A hyperbolic graph neural network for temporal link prediction. In: Proceedings of the ACM Web Conference 2023, WWW, pp. 523–532 (2023) Petersen [2006] Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Mu, X., Zhu, F., Lim, E., Xiao, J., Wang, J., Zhou, Z.: User identity linkage by latent user space modelling. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD, pp. 1775–1784 (2016) Kong et al. [2013] Kong, X., Zhang, J., Yu, P.S.: Inferring anchor links across multiple heterogeneous social networks. In: Proceedings of the 22nd ACM International Conference on Information and Knowledge Management, CIKM’13, CIKM, pp. 179–188 (2013) Zhan et al. [2019] Zhan, Q., Zhang, J., Yu, P.S.: Integrated anchor and social link predictions across multiple social networks. Knowl. Inf. Syst. 60(1), 303–326 (2019) Zhang and Tong [2016] Zhang, S., Tong, H.: FINAL: fast attributed network alignment. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD, pp. 1345–1354 (2016) Bayati et al. [2009] Bayati, M., Gerritsen, M., Gleich, D.F., Saberi, A., Wang, Y.: Algorithms for large, sparse network alignment problems. In: Proceedings of the Ninth IEEE International Conference on Data Mining, ICDM, pp. 705–710 (2009) Wang et al. [2020] Wang, F., Sun, L., Zhang, Z.: Hyperbolic user identity linkage across social networks. In: Proceedings of the Global Communications Conference, GLOBECOM 2020, IEEE, pp. 1–6 (2020) Sun et al. [2020] Sun, L., Zhang, Z., Zhang, J., Wang, F., Du, Y., Su, S., Yu, P.S.: Perfect: A hyperbolic embedding for joint user and community alignment. In: Proceedings of the 20th IEEE International Conference on Data Mining, ICDM, pp. 501–510 (2020) Sun et al. [2022] Sun, L., Ye, J., Peng, H., Yu, P.S.: A self-supervised riemannian GNN with time varying curvature for temporal graph learning. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pp. 1827–1836 (2022) Bai et al. [2023] Bai, Q., Nie, C., Zhang, H., Zhao, D., Yuan, X.: Hgwavenet: A hyperbolic graph neural network for temporal link prediction. In: Proceedings of the ACM Web Conference 2023, WWW, pp. 523–532 (2023) Petersen [2006] Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Kong, X., Zhang, J., Yu, P.S.: Inferring anchor links across multiple heterogeneous social networks. In: Proceedings of the 22nd ACM International Conference on Information and Knowledge Management, CIKM’13, CIKM, pp. 179–188 (2013) Zhan et al. [2019] Zhan, Q., Zhang, J., Yu, P.S.: Integrated anchor and social link predictions across multiple social networks. Knowl. Inf. Syst. 60(1), 303–326 (2019) Zhang and Tong [2016] Zhang, S., Tong, H.: FINAL: fast attributed network alignment. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD, pp. 1345–1354 (2016) Bayati et al. [2009] Bayati, M., Gerritsen, M., Gleich, D.F., Saberi, A., Wang, Y.: Algorithms for large, sparse network alignment problems. In: Proceedings of the Ninth IEEE International Conference on Data Mining, ICDM, pp. 705–710 (2009) Wang et al. [2020] Wang, F., Sun, L., Zhang, Z.: Hyperbolic user identity linkage across social networks. In: Proceedings of the Global Communications Conference, GLOBECOM 2020, IEEE, pp. 1–6 (2020) Sun et al. [2020] Sun, L., Zhang, Z., Zhang, J., Wang, F., Du, Y., Su, S., Yu, P.S.: Perfect: A hyperbolic embedding for joint user and community alignment. In: Proceedings of the 20th IEEE International Conference on Data Mining, ICDM, pp. 501–510 (2020) Sun et al. [2022] Sun, L., Ye, J., Peng, H., Yu, P.S.: A self-supervised riemannian GNN with time varying curvature for temporal graph learning. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pp. 1827–1836 (2022) Bai et al. [2023] Bai, Q., Nie, C., Zhang, H., Zhao, D., Yuan, X.: Hgwavenet: A hyperbolic graph neural network for temporal link prediction. In: Proceedings of the ACM Web Conference 2023, WWW, pp. 523–532 (2023) Petersen [2006] Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhan, Q., Zhang, J., Yu, P.S.: Integrated anchor and social link predictions across multiple social networks. Knowl. Inf. Syst. 60(1), 303–326 (2019) Zhang and Tong [2016] Zhang, S., Tong, H.: FINAL: fast attributed network alignment. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD, pp. 1345–1354 (2016) Bayati et al. [2009] Bayati, M., Gerritsen, M., Gleich, D.F., Saberi, A., Wang, Y.: Algorithms for large, sparse network alignment problems. In: Proceedings of the Ninth IEEE International Conference on Data Mining, ICDM, pp. 705–710 (2009) Wang et al. [2020] Wang, F., Sun, L., Zhang, Z.: Hyperbolic user identity linkage across social networks. In: Proceedings of the Global Communications Conference, GLOBECOM 2020, IEEE, pp. 1–6 (2020) Sun et al. [2020] Sun, L., Zhang, Z., Zhang, J., Wang, F., Du, Y., Su, S., Yu, P.S.: Perfect: A hyperbolic embedding for joint user and community alignment. In: Proceedings of the 20th IEEE International Conference on Data Mining, ICDM, pp. 501–510 (2020) Sun et al. [2022] Sun, L., Ye, J., Peng, H., Yu, P.S.: A self-supervised riemannian GNN with time varying curvature for temporal graph learning. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pp. 1827–1836 (2022) Bai et al. [2023] Bai, Q., Nie, C., Zhang, H., Zhao, D., Yuan, X.: Hgwavenet: A hyperbolic graph neural network for temporal link prediction. In: Proceedings of the ACM Web Conference 2023, WWW, pp. 523–532 (2023) Petersen [2006] Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhang, S., Tong, H.: FINAL: fast attributed network alignment. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD, pp. 1345–1354 (2016) Bayati et al. [2009] Bayati, M., Gerritsen, M., Gleich, D.F., Saberi, A., Wang, Y.: Algorithms for large, sparse network alignment problems. In: Proceedings of the Ninth IEEE International Conference on Data Mining, ICDM, pp. 705–710 (2009) Wang et al. [2020] Wang, F., Sun, L., Zhang, Z.: Hyperbolic user identity linkage across social networks. In: Proceedings of the Global Communications Conference, GLOBECOM 2020, IEEE, pp. 1–6 (2020) Sun et al. [2020] Sun, L., Zhang, Z., Zhang, J., Wang, F., Du, Y., Su, S., Yu, P.S.: Perfect: A hyperbolic embedding for joint user and community alignment. In: Proceedings of the 20th IEEE International Conference on Data Mining, ICDM, pp. 501–510 (2020) Sun et al. [2022] Sun, L., Ye, J., Peng, H., Yu, P.S.: A self-supervised riemannian GNN with time varying curvature for temporal graph learning. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pp. 1827–1836 (2022) Bai et al. [2023] Bai, Q., Nie, C., Zhang, H., Zhao, D., Yuan, X.: Hgwavenet: A hyperbolic graph neural network for temporal link prediction. In: Proceedings of the ACM Web Conference 2023, WWW, pp. 523–532 (2023) Petersen [2006] Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Bayati, M., Gerritsen, M., Gleich, D.F., Saberi, A., Wang, Y.: Algorithms for large, sparse network alignment problems. In: Proceedings of the Ninth IEEE International Conference on Data Mining, ICDM, pp. 705–710 (2009) Wang et al. [2020] Wang, F., Sun, L., Zhang, Z.: Hyperbolic user identity linkage across social networks. In: Proceedings of the Global Communications Conference, GLOBECOM 2020, IEEE, pp. 1–6 (2020) Sun et al. [2020] Sun, L., Zhang, Z., Zhang, J., Wang, F., Du, Y., Su, S., Yu, P.S.: Perfect: A hyperbolic embedding for joint user and community alignment. In: Proceedings of the 20th IEEE International Conference on Data Mining, ICDM, pp. 501–510 (2020) Sun et al. [2022] Sun, L., Ye, J., Peng, H., Yu, P.S.: A self-supervised riemannian GNN with time varying curvature for temporal graph learning. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pp. 1827–1836 (2022) Bai et al. [2023] Bai, Q., Nie, C., Zhang, H., Zhao, D., Yuan, X.: Hgwavenet: A hyperbolic graph neural network for temporal link prediction. In: Proceedings of the ACM Web Conference 2023, WWW, pp. 523–532 (2023) Petersen [2006] Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Wang, F., Sun, L., Zhang, Z.: Hyperbolic user identity linkage across social networks. In: Proceedings of the Global Communications Conference, GLOBECOM 2020, IEEE, pp. 1–6 (2020) Sun et al. [2020] Sun, L., Zhang, Z., Zhang, J., Wang, F., Du, Y., Su, S., Yu, P.S.: Perfect: A hyperbolic embedding for joint user and community alignment. In: Proceedings of the 20th IEEE International Conference on Data Mining, ICDM, pp. 501–510 (2020) Sun et al. [2022] Sun, L., Ye, J., Peng, H., Yu, P.S.: A self-supervised riemannian GNN with time varying curvature for temporal graph learning. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pp. 1827–1836 (2022) Bai et al. [2023] Bai, Q., Nie, C., Zhang, H., Zhao, D., Yuan, X.: Hgwavenet: A hyperbolic graph neural network for temporal link prediction. In: Proceedings of the ACM Web Conference 2023, WWW, pp. 523–532 (2023) Petersen [2006] Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Zhang, J., Wang, F., Du, Y., Su, S., Yu, P.S.: Perfect: A hyperbolic embedding for joint user and community alignment. In: Proceedings of the 20th IEEE International Conference on Data Mining, ICDM, pp. 501–510 (2020) Sun et al. [2022] Sun, L., Ye, J., Peng, H., Yu, P.S.: A self-supervised riemannian GNN with time varying curvature for temporal graph learning. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pp. 1827–1836 (2022) Bai et al. [2023] Bai, Q., Nie, C., Zhang, H., Zhao, D., Yuan, X.: Hgwavenet: A hyperbolic graph neural network for temporal link prediction. In: Proceedings of the ACM Web Conference 2023, WWW, pp. 523–532 (2023) Petersen [2006] Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Ye, J., Peng, H., Yu, P.S.: A self-supervised riemannian GNN with time varying curvature for temporal graph learning. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pp. 1827–1836 (2022) Bai et al. [2023] Bai, Q., Nie, C., Zhang, H., Zhao, D., Yuan, X.: Hgwavenet: A hyperbolic graph neural network for temporal link prediction. In: Proceedings of the ACM Web Conference 2023, WWW, pp. 523–532 (2023) Petersen [2006] Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Bai, Q., Nie, C., Zhang, H., Zhao, D., Yuan, X.: Hgwavenet: A hyperbolic graph neural network for temporal link prediction. In: Proceedings of the ACM Web Conference 2023, WWW, pp. 523–532 (2023) Petersen [2006] Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022)
- Velickovic, P., Fedus, W., Hamilton, W.L., Liò, P., Bengio, Y., Hjelm, R.D.: Deep graph infomax. CoRR abs/1809.10341 (2018) Fang et al. [2023] Fang, Z., Tan, S., Wang, Y., Lü, J.: Elementary subgraph features for link prediction with neural networks. IEEE Trans. Knowl. Data Eng. 35(4), 3822–3831 (2023) Wu et al. [2021] Wu, W., Li, B., Luo, C., Nejdl, W.: Hashing-accelerated graph neural networks for link prediction. In: Proceedings of the Web Conference 2021, WWW, pp. 2910–2920 (2021) Liu et al. [2023] Liu, N., Wang, X., Han, H., Shi, C.: Hierarchical contrastive learning enhanced heterogeneous graph neural network. IEEE Trans. Knowl. Data Eng. 35(10), 10884–10896 (2023) Chen et al. [2021] Chen, H., Li, Y., Shi, S., Liu, S., Zhu, H., Zhang, Y.: Graph collaborative reasoning. CoRR abs/2112.13705 (2021) Chen et al. [2020] Chen, H., Yin, H., Sun, X., Chen, T., Gabrys, B., Musial, K.: Multi-level graph convolutional networks for cross-platform anchor link prediction. In: Proceedings of the 26th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 1503–1511 (2020) Mu et al. [2016] Mu, X., Zhu, F., Lim, E., Xiao, J., Wang, J., Zhou, Z.: User identity linkage by latent user space modelling. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD, pp. 1775–1784 (2016) Kong et al. [2013] Kong, X., Zhang, J., Yu, P.S.: Inferring anchor links across multiple heterogeneous social networks. In: Proceedings of the 22nd ACM International Conference on Information and Knowledge Management, CIKM’13, CIKM, pp. 179–188 (2013) Zhan et al. [2019] Zhan, Q., Zhang, J., Yu, P.S.: Integrated anchor and social link predictions across multiple social networks. Knowl. Inf. Syst. 60(1), 303–326 (2019) Zhang and Tong [2016] Zhang, S., Tong, H.: FINAL: fast attributed network alignment. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD, pp. 1345–1354 (2016) Bayati et al. [2009] Bayati, M., Gerritsen, M., Gleich, D.F., Saberi, A., Wang, Y.: Algorithms for large, sparse network alignment problems. In: Proceedings of the Ninth IEEE International Conference on Data Mining, ICDM, pp. 705–710 (2009) Wang et al. [2020] Wang, F., Sun, L., Zhang, Z.: Hyperbolic user identity linkage across social networks. In: Proceedings of the Global Communications Conference, GLOBECOM 2020, IEEE, pp. 1–6 (2020) Sun et al. [2020] Sun, L., Zhang, Z., Zhang, J., Wang, F., Du, Y., Su, S., Yu, P.S.: Perfect: A hyperbolic embedding for joint user and community alignment. In: Proceedings of the 20th IEEE International Conference on Data Mining, ICDM, pp. 501–510 (2020) Sun et al. [2022] Sun, L., Ye, J., Peng, H., Yu, P.S.: A self-supervised riemannian GNN with time varying curvature for temporal graph learning. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pp. 1827–1836 (2022) Bai et al. [2023] Bai, Q., Nie, C., Zhang, H., Zhao, D., Yuan, X.: Hgwavenet: A hyperbolic graph neural network for temporal link prediction. In: Proceedings of the ACM Web Conference 2023, WWW, pp. 523–532 (2023) Petersen [2006] Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Fang, Z., Tan, S., Wang, Y., Lü, J.: Elementary subgraph features for link prediction with neural networks. IEEE Trans. Knowl. Data Eng. 35(4), 3822–3831 (2023) Wu et al. [2021] Wu, W., Li, B., Luo, C., Nejdl, W.: Hashing-accelerated graph neural networks for link prediction. In: Proceedings of the Web Conference 2021, WWW, pp. 2910–2920 (2021) Liu et al. [2023] Liu, N., Wang, X., Han, H., Shi, C.: Hierarchical contrastive learning enhanced heterogeneous graph neural network. IEEE Trans. Knowl. Data Eng. 35(10), 10884–10896 (2023) Chen et al. [2021] Chen, H., Li, Y., Shi, S., Liu, S., Zhu, H., Zhang, Y.: Graph collaborative reasoning. CoRR abs/2112.13705 (2021) Chen et al. [2020] Chen, H., Yin, H., Sun, X., Chen, T., Gabrys, B., Musial, K.: Multi-level graph convolutional networks for cross-platform anchor link prediction. In: Proceedings of the 26th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 1503–1511 (2020) Mu et al. [2016] Mu, X., Zhu, F., Lim, E., Xiao, J., Wang, J., Zhou, Z.: User identity linkage by latent user space modelling. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD, pp. 1775–1784 (2016) Kong et al. [2013] Kong, X., Zhang, J., Yu, P.S.: Inferring anchor links across multiple heterogeneous social networks. In: Proceedings of the 22nd ACM International Conference on Information and Knowledge Management, CIKM’13, CIKM, pp. 179–188 (2013) Zhan et al. [2019] Zhan, Q., Zhang, J., Yu, P.S.: Integrated anchor and social link predictions across multiple social networks. Knowl. Inf. Syst. 60(1), 303–326 (2019) Zhang and Tong [2016] Zhang, S., Tong, H.: FINAL: fast attributed network alignment. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD, pp. 1345–1354 (2016) Bayati et al. [2009] Bayati, M., Gerritsen, M., Gleich, D.F., Saberi, A., Wang, Y.: Algorithms for large, sparse network alignment problems. In: Proceedings of the Ninth IEEE International Conference on Data Mining, ICDM, pp. 705–710 (2009) Wang et al. [2020] Wang, F., Sun, L., Zhang, Z.: Hyperbolic user identity linkage across social networks. In: Proceedings of the Global Communications Conference, GLOBECOM 2020, IEEE, pp. 1–6 (2020) Sun et al. [2020] Sun, L., Zhang, Z., Zhang, J., Wang, F., Du, Y., Su, S., Yu, P.S.: Perfect: A hyperbolic embedding for joint user and community alignment. In: Proceedings of the 20th IEEE International Conference on Data Mining, ICDM, pp. 501–510 (2020) Sun et al. [2022] Sun, L., Ye, J., Peng, H., Yu, P.S.: A self-supervised riemannian GNN with time varying curvature for temporal graph learning. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pp. 1827–1836 (2022) Bai et al. [2023] Bai, Q., Nie, C., Zhang, H., Zhao, D., Yuan, X.: Hgwavenet: A hyperbolic graph neural network for temporal link prediction. In: Proceedings of the ACM Web Conference 2023, WWW, pp. 523–532 (2023) Petersen [2006] Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Wu, W., Li, B., Luo, C., Nejdl, W.: Hashing-accelerated graph neural networks for link prediction. In: Proceedings of the Web Conference 2021, WWW, pp. 2910–2920 (2021) Liu et al. [2023] Liu, N., Wang, X., Han, H., Shi, C.: Hierarchical contrastive learning enhanced heterogeneous graph neural network. IEEE Trans. Knowl. Data Eng. 35(10), 10884–10896 (2023) Chen et al. [2021] Chen, H., Li, Y., Shi, S., Liu, S., Zhu, H., Zhang, Y.: Graph collaborative reasoning. CoRR abs/2112.13705 (2021) Chen et al. [2020] Chen, H., Yin, H., Sun, X., Chen, T., Gabrys, B., Musial, K.: Multi-level graph convolutional networks for cross-platform anchor link prediction. In: Proceedings of the 26th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 1503–1511 (2020) Mu et al. [2016] Mu, X., Zhu, F., Lim, E., Xiao, J., Wang, J., Zhou, Z.: User identity linkage by latent user space modelling. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD, pp. 1775–1784 (2016) Kong et al. [2013] Kong, X., Zhang, J., Yu, P.S.: Inferring anchor links across multiple heterogeneous social networks. In: Proceedings of the 22nd ACM International Conference on Information and Knowledge Management, CIKM’13, CIKM, pp. 179–188 (2013) Zhan et al. [2019] Zhan, Q., Zhang, J., Yu, P.S.: Integrated anchor and social link predictions across multiple social networks. Knowl. Inf. Syst. 60(1), 303–326 (2019) Zhang and Tong [2016] Zhang, S., Tong, H.: FINAL: fast attributed network alignment. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD, pp. 1345–1354 (2016) Bayati et al. [2009] Bayati, M., Gerritsen, M., Gleich, D.F., Saberi, A., Wang, Y.: Algorithms for large, sparse network alignment problems. In: Proceedings of the Ninth IEEE International Conference on Data Mining, ICDM, pp. 705–710 (2009) Wang et al. [2020] Wang, F., Sun, L., Zhang, Z.: Hyperbolic user identity linkage across social networks. In: Proceedings of the Global Communications Conference, GLOBECOM 2020, IEEE, pp. 1–6 (2020) Sun et al. [2020] Sun, L., Zhang, Z., Zhang, J., Wang, F., Du, Y., Su, S., Yu, P.S.: Perfect: A hyperbolic embedding for joint user and community alignment. In: Proceedings of the 20th IEEE International Conference on Data Mining, ICDM, pp. 501–510 (2020) Sun et al. [2022] Sun, L., Ye, J., Peng, H., Yu, P.S.: A self-supervised riemannian GNN with time varying curvature for temporal graph learning. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pp. 1827–1836 (2022) Bai et al. [2023] Bai, Q., Nie, C., Zhang, H., Zhao, D., Yuan, X.: Hgwavenet: A hyperbolic graph neural network for temporal link prediction. In: Proceedings of the ACM Web Conference 2023, WWW, pp. 523–532 (2023) Petersen [2006] Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, N., Wang, X., Han, H., Shi, C.: Hierarchical contrastive learning enhanced heterogeneous graph neural network. IEEE Trans. Knowl. Data Eng. 35(10), 10884–10896 (2023) Chen et al. [2021] Chen, H., Li, Y., Shi, S., Liu, S., Zhu, H., Zhang, Y.: Graph collaborative reasoning. CoRR abs/2112.13705 (2021) Chen et al. [2020] Chen, H., Yin, H., Sun, X., Chen, T., Gabrys, B., Musial, K.: Multi-level graph convolutional networks for cross-platform anchor link prediction. In: Proceedings of the 26th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 1503–1511 (2020) Mu et al. [2016] Mu, X., Zhu, F., Lim, E., Xiao, J., Wang, J., Zhou, Z.: User identity linkage by latent user space modelling. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD, pp. 1775–1784 (2016) Kong et al. [2013] Kong, X., Zhang, J., Yu, P.S.: Inferring anchor links across multiple heterogeneous social networks. In: Proceedings of the 22nd ACM International Conference on Information and Knowledge Management, CIKM’13, CIKM, pp. 179–188 (2013) Zhan et al. [2019] Zhan, Q., Zhang, J., Yu, P.S.: Integrated anchor and social link predictions across multiple social networks. Knowl. Inf. Syst. 60(1), 303–326 (2019) Zhang and Tong [2016] Zhang, S., Tong, H.: FINAL: fast attributed network alignment. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD, pp. 1345–1354 (2016) Bayati et al. [2009] Bayati, M., Gerritsen, M., Gleich, D.F., Saberi, A., Wang, Y.: Algorithms for large, sparse network alignment problems. In: Proceedings of the Ninth IEEE International Conference on Data Mining, ICDM, pp. 705–710 (2009) Wang et al. [2020] Wang, F., Sun, L., Zhang, Z.: Hyperbolic user identity linkage across social networks. In: Proceedings of the Global Communications Conference, GLOBECOM 2020, IEEE, pp. 1–6 (2020) Sun et al. [2020] Sun, L., Zhang, Z., Zhang, J., Wang, F., Du, Y., Su, S., Yu, P.S.: Perfect: A hyperbolic embedding for joint user and community alignment. In: Proceedings of the 20th IEEE International Conference on Data Mining, ICDM, pp. 501–510 (2020) Sun et al. [2022] Sun, L., Ye, J., Peng, H., Yu, P.S.: A self-supervised riemannian GNN with time varying curvature for temporal graph learning. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pp. 1827–1836 (2022) Bai et al. [2023] Bai, Q., Nie, C., Zhang, H., Zhao, D., Yuan, X.: Hgwavenet: A hyperbolic graph neural network for temporal link prediction. In: Proceedings of the ACM Web Conference 2023, WWW, pp. 523–532 (2023) Petersen [2006] Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Chen, H., Li, Y., Shi, S., Liu, S., Zhu, H., Zhang, Y.: Graph collaborative reasoning. CoRR abs/2112.13705 (2021) Chen et al. [2020] Chen, H., Yin, H., Sun, X., Chen, T., Gabrys, B., Musial, K.: Multi-level graph convolutional networks for cross-platform anchor link prediction. In: Proceedings of the 26th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 1503–1511 (2020) Mu et al. [2016] Mu, X., Zhu, F., Lim, E., Xiao, J., Wang, J., Zhou, Z.: User identity linkage by latent user space modelling. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD, pp. 1775–1784 (2016) Kong et al. [2013] Kong, X., Zhang, J., Yu, P.S.: Inferring anchor links across multiple heterogeneous social networks. In: Proceedings of the 22nd ACM International Conference on Information and Knowledge Management, CIKM’13, CIKM, pp. 179–188 (2013) Zhan et al. [2019] Zhan, Q., Zhang, J., Yu, P.S.: Integrated anchor and social link predictions across multiple social networks. Knowl. Inf. Syst. 60(1), 303–326 (2019) Zhang and Tong [2016] Zhang, S., Tong, H.: FINAL: fast attributed network alignment. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD, pp. 1345–1354 (2016) Bayati et al. [2009] Bayati, M., Gerritsen, M., Gleich, D.F., Saberi, A., Wang, Y.: Algorithms for large, sparse network alignment problems. In: Proceedings of the Ninth IEEE International Conference on Data Mining, ICDM, pp. 705–710 (2009) Wang et al. [2020] Wang, F., Sun, L., Zhang, Z.: Hyperbolic user identity linkage across social networks. In: Proceedings of the Global Communications Conference, GLOBECOM 2020, IEEE, pp. 1–6 (2020) Sun et al. [2020] Sun, L., Zhang, Z., Zhang, J., Wang, F., Du, Y., Su, S., Yu, P.S.: Perfect: A hyperbolic embedding for joint user and community alignment. In: Proceedings of the 20th IEEE International Conference on Data Mining, ICDM, pp. 501–510 (2020) Sun et al. [2022] Sun, L., Ye, J., Peng, H., Yu, P.S.: A self-supervised riemannian GNN with time varying curvature for temporal graph learning. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pp. 1827–1836 (2022) Bai et al. [2023] Bai, Q., Nie, C., Zhang, H., Zhao, D., Yuan, X.: Hgwavenet: A hyperbolic graph neural network for temporal link prediction. In: Proceedings of the ACM Web Conference 2023, WWW, pp. 523–532 (2023) Petersen [2006] Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Chen, H., Yin, H., Sun, X., Chen, T., Gabrys, B., Musial, K.: Multi-level graph convolutional networks for cross-platform anchor link prediction. In: Proceedings of the 26th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 1503–1511 (2020) Mu et al. [2016] Mu, X., Zhu, F., Lim, E., Xiao, J., Wang, J., Zhou, Z.: User identity linkage by latent user space modelling. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD, pp. 1775–1784 (2016) Kong et al. [2013] Kong, X., Zhang, J., Yu, P.S.: Inferring anchor links across multiple heterogeneous social networks. In: Proceedings of the 22nd ACM International Conference on Information and Knowledge Management, CIKM’13, CIKM, pp. 179–188 (2013) Zhan et al. [2019] Zhan, Q., Zhang, J., Yu, P.S.: Integrated anchor and social link predictions across multiple social networks. Knowl. Inf. Syst. 60(1), 303–326 (2019) Zhang and Tong [2016] Zhang, S., Tong, H.: FINAL: fast attributed network alignment. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD, pp. 1345–1354 (2016) Bayati et al. [2009] Bayati, M., Gerritsen, M., Gleich, D.F., Saberi, A., Wang, Y.: Algorithms for large, sparse network alignment problems. In: Proceedings of the Ninth IEEE International Conference on Data Mining, ICDM, pp. 705–710 (2009) Wang et al. [2020] Wang, F., Sun, L., Zhang, Z.: Hyperbolic user identity linkage across social networks. In: Proceedings of the Global Communications Conference, GLOBECOM 2020, IEEE, pp. 1–6 (2020) Sun et al. [2020] Sun, L., Zhang, Z., Zhang, J., Wang, F., Du, Y., Su, S., Yu, P.S.: Perfect: A hyperbolic embedding for joint user and community alignment. In: Proceedings of the 20th IEEE International Conference on Data Mining, ICDM, pp. 501–510 (2020) Sun et al. [2022] Sun, L., Ye, J., Peng, H., Yu, P.S.: A self-supervised riemannian GNN with time varying curvature for temporal graph learning. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pp. 1827–1836 (2022) Bai et al. [2023] Bai, Q., Nie, C., Zhang, H., Zhao, D., Yuan, X.: Hgwavenet: A hyperbolic graph neural network for temporal link prediction. In: Proceedings of the ACM Web Conference 2023, WWW, pp. 523–532 (2023) Petersen [2006] Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Mu, X., Zhu, F., Lim, E., Xiao, J., Wang, J., Zhou, Z.: User identity linkage by latent user space modelling. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD, pp. 1775–1784 (2016) Kong et al. [2013] Kong, X., Zhang, J., Yu, P.S.: Inferring anchor links across multiple heterogeneous social networks. In: Proceedings of the 22nd ACM International Conference on Information and Knowledge Management, CIKM’13, CIKM, pp. 179–188 (2013) Zhan et al. [2019] Zhan, Q., Zhang, J., Yu, P.S.: Integrated anchor and social link predictions across multiple social networks. Knowl. Inf. Syst. 60(1), 303–326 (2019) Zhang and Tong [2016] Zhang, S., Tong, H.: FINAL: fast attributed network alignment. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD, pp. 1345–1354 (2016) Bayati et al. [2009] Bayati, M., Gerritsen, M., Gleich, D.F., Saberi, A., Wang, Y.: Algorithms for large, sparse network alignment problems. In: Proceedings of the Ninth IEEE International Conference on Data Mining, ICDM, pp. 705–710 (2009) Wang et al. [2020] Wang, F., Sun, L., Zhang, Z.: Hyperbolic user identity linkage across social networks. In: Proceedings of the Global Communications Conference, GLOBECOM 2020, IEEE, pp. 1–6 (2020) Sun et al. [2020] Sun, L., Zhang, Z., Zhang, J., Wang, F., Du, Y., Su, S., Yu, P.S.: Perfect: A hyperbolic embedding for joint user and community alignment. In: Proceedings of the 20th IEEE International Conference on Data Mining, ICDM, pp. 501–510 (2020) Sun et al. [2022] Sun, L., Ye, J., Peng, H., Yu, P.S.: A self-supervised riemannian GNN with time varying curvature for temporal graph learning. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pp. 1827–1836 (2022) Bai et al. [2023] Bai, Q., Nie, C., Zhang, H., Zhao, D., Yuan, X.: Hgwavenet: A hyperbolic graph neural network for temporal link prediction. In: Proceedings of the ACM Web Conference 2023, WWW, pp. 523–532 (2023) Petersen [2006] Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Kong, X., Zhang, J., Yu, P.S.: Inferring anchor links across multiple heterogeneous social networks. In: Proceedings of the 22nd ACM International Conference on Information and Knowledge Management, CIKM’13, CIKM, pp. 179–188 (2013) Zhan et al. [2019] Zhan, Q., Zhang, J., Yu, P.S.: Integrated anchor and social link predictions across multiple social networks. Knowl. Inf. Syst. 60(1), 303–326 (2019) Zhang and Tong [2016] Zhang, S., Tong, H.: FINAL: fast attributed network alignment. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD, pp. 1345–1354 (2016) Bayati et al. [2009] Bayati, M., Gerritsen, M., Gleich, D.F., Saberi, A., Wang, Y.: Algorithms for large, sparse network alignment problems. In: Proceedings of the Ninth IEEE International Conference on Data Mining, ICDM, pp. 705–710 (2009) Wang et al. [2020] Wang, F., Sun, L., Zhang, Z.: Hyperbolic user identity linkage across social networks. In: Proceedings of the Global Communications Conference, GLOBECOM 2020, IEEE, pp. 1–6 (2020) Sun et al. [2020] Sun, L., Zhang, Z., Zhang, J., Wang, F., Du, Y., Su, S., Yu, P.S.: Perfect: A hyperbolic embedding for joint user and community alignment. In: Proceedings of the 20th IEEE International Conference on Data Mining, ICDM, pp. 501–510 (2020) Sun et al. [2022] Sun, L., Ye, J., Peng, H., Yu, P.S.: A self-supervised riemannian GNN with time varying curvature for temporal graph learning. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pp. 1827–1836 (2022) Bai et al. [2023] Bai, Q., Nie, C., Zhang, H., Zhao, D., Yuan, X.: Hgwavenet: A hyperbolic graph neural network for temporal link prediction. In: Proceedings of the ACM Web Conference 2023, WWW, pp. 523–532 (2023) Petersen [2006] Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhan, Q., Zhang, J., Yu, P.S.: Integrated anchor and social link predictions across multiple social networks. Knowl. Inf. Syst. 60(1), 303–326 (2019) Zhang and Tong [2016] Zhang, S., Tong, H.: FINAL: fast attributed network alignment. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD, pp. 1345–1354 (2016) Bayati et al. [2009] Bayati, M., Gerritsen, M., Gleich, D.F., Saberi, A., Wang, Y.: Algorithms for large, sparse network alignment problems. In: Proceedings of the Ninth IEEE International Conference on Data Mining, ICDM, pp. 705–710 (2009) Wang et al. [2020] Wang, F., Sun, L., Zhang, Z.: Hyperbolic user identity linkage across social networks. In: Proceedings of the Global Communications Conference, GLOBECOM 2020, IEEE, pp. 1–6 (2020) Sun et al. [2020] Sun, L., Zhang, Z., Zhang, J., Wang, F., Du, Y., Su, S., Yu, P.S.: Perfect: A hyperbolic embedding for joint user and community alignment. In: Proceedings of the 20th IEEE International Conference on Data Mining, ICDM, pp. 501–510 (2020) Sun et al. [2022] Sun, L., Ye, J., Peng, H., Yu, P.S.: A self-supervised riemannian GNN with time varying curvature for temporal graph learning. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pp. 1827–1836 (2022) Bai et al. [2023] Bai, Q., Nie, C., Zhang, H., Zhao, D., Yuan, X.: Hgwavenet: A hyperbolic graph neural network for temporal link prediction. In: Proceedings of the ACM Web Conference 2023, WWW, pp. 523–532 (2023) Petersen [2006] Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhang, S., Tong, H.: FINAL: fast attributed network alignment. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD, pp. 1345–1354 (2016) Bayati et al. [2009] Bayati, M., Gerritsen, M., Gleich, D.F., Saberi, A., Wang, Y.: Algorithms for large, sparse network alignment problems. In: Proceedings of the Ninth IEEE International Conference on Data Mining, ICDM, pp. 705–710 (2009) Wang et al. [2020] Wang, F., Sun, L., Zhang, Z.: Hyperbolic user identity linkage across social networks. In: Proceedings of the Global Communications Conference, GLOBECOM 2020, IEEE, pp. 1–6 (2020) Sun et al. [2020] Sun, L., Zhang, Z., Zhang, J., Wang, F., Du, Y., Su, S., Yu, P.S.: Perfect: A hyperbolic embedding for joint user and community alignment. In: Proceedings of the 20th IEEE International Conference on Data Mining, ICDM, pp. 501–510 (2020) Sun et al. [2022] Sun, L., Ye, J., Peng, H., Yu, P.S.: A self-supervised riemannian GNN with time varying curvature for temporal graph learning. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pp. 1827–1836 (2022) Bai et al. [2023] Bai, Q., Nie, C., Zhang, H., Zhao, D., Yuan, X.: Hgwavenet: A hyperbolic graph neural network for temporal link prediction. In: Proceedings of the ACM Web Conference 2023, WWW, pp. 523–532 (2023) Petersen [2006] Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Bayati, M., Gerritsen, M., Gleich, D.F., Saberi, A., Wang, Y.: Algorithms for large, sparse network alignment problems. In: Proceedings of the Ninth IEEE International Conference on Data Mining, ICDM, pp. 705–710 (2009) Wang et al. [2020] Wang, F., Sun, L., Zhang, Z.: Hyperbolic user identity linkage across social networks. In: Proceedings of the Global Communications Conference, GLOBECOM 2020, IEEE, pp. 1–6 (2020) Sun et al. [2020] Sun, L., Zhang, Z., Zhang, J., Wang, F., Du, Y., Su, S., Yu, P.S.: Perfect: A hyperbolic embedding for joint user and community alignment. In: Proceedings of the 20th IEEE International Conference on Data Mining, ICDM, pp. 501–510 (2020) Sun et al. [2022] Sun, L., Ye, J., Peng, H., Yu, P.S.: A self-supervised riemannian GNN with time varying curvature for temporal graph learning. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pp. 1827–1836 (2022) Bai et al. [2023] Bai, Q., Nie, C., Zhang, H., Zhao, D., Yuan, X.: Hgwavenet: A hyperbolic graph neural network for temporal link prediction. In: Proceedings of the ACM Web Conference 2023, WWW, pp. 523–532 (2023) Petersen [2006] Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Wang, F., Sun, L., Zhang, Z.: Hyperbolic user identity linkage across social networks. In: Proceedings of the Global Communications Conference, GLOBECOM 2020, IEEE, pp. 1–6 (2020) Sun et al. [2020] Sun, L., Zhang, Z., Zhang, J., Wang, F., Du, Y., Su, S., Yu, P.S.: Perfect: A hyperbolic embedding for joint user and community alignment. In: Proceedings of the 20th IEEE International Conference on Data Mining, ICDM, pp. 501–510 (2020) Sun et al. [2022] Sun, L., Ye, J., Peng, H., Yu, P.S.: A self-supervised riemannian GNN with time varying curvature for temporal graph learning. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pp. 1827–1836 (2022) Bai et al. [2023] Bai, Q., Nie, C., Zhang, H., Zhao, D., Yuan, X.: Hgwavenet: A hyperbolic graph neural network for temporal link prediction. In: Proceedings of the ACM Web Conference 2023, WWW, pp. 523–532 (2023) Petersen [2006] Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Zhang, J., Wang, F., Du, Y., Su, S., Yu, P.S.: Perfect: A hyperbolic embedding for joint user and community alignment. In: Proceedings of the 20th IEEE International Conference on Data Mining, ICDM, pp. 501–510 (2020) Sun et al. [2022] Sun, L., Ye, J., Peng, H., Yu, P.S.: A self-supervised riemannian GNN with time varying curvature for temporal graph learning. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pp. 1827–1836 (2022) Bai et al. [2023] Bai, Q., Nie, C., Zhang, H., Zhao, D., Yuan, X.: Hgwavenet: A hyperbolic graph neural network for temporal link prediction. In: Proceedings of the ACM Web Conference 2023, WWW, pp. 523–532 (2023) Petersen [2006] Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Ye, J., Peng, H., Yu, P.S.: A self-supervised riemannian GNN with time varying curvature for temporal graph learning. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pp. 1827–1836 (2022) Bai et al. [2023] Bai, Q., Nie, C., Zhang, H., Zhao, D., Yuan, X.: Hgwavenet: A hyperbolic graph neural network for temporal link prediction. In: Proceedings of the ACM Web Conference 2023, WWW, pp. 523–532 (2023) Petersen [2006] Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Bai, Q., Nie, C., Zhang, H., Zhao, D., Yuan, X.: Hgwavenet: A hyperbolic graph neural network for temporal link prediction. In: Proceedings of the ACM Web Conference 2023, WWW, pp. 523–532 (2023) Petersen [2006] Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022)
- Fang, Z., Tan, S., Wang, Y., Lü, J.: Elementary subgraph features for link prediction with neural networks. IEEE Trans. Knowl. Data Eng. 35(4), 3822–3831 (2023) Wu et al. [2021] Wu, W., Li, B., Luo, C., Nejdl, W.: Hashing-accelerated graph neural networks for link prediction. In: Proceedings of the Web Conference 2021, WWW, pp. 2910–2920 (2021) Liu et al. [2023] Liu, N., Wang, X., Han, H., Shi, C.: Hierarchical contrastive learning enhanced heterogeneous graph neural network. IEEE Trans. Knowl. Data Eng. 35(10), 10884–10896 (2023) Chen et al. [2021] Chen, H., Li, Y., Shi, S., Liu, S., Zhu, H., Zhang, Y.: Graph collaborative reasoning. CoRR abs/2112.13705 (2021) Chen et al. [2020] Chen, H., Yin, H., Sun, X., Chen, T., Gabrys, B., Musial, K.: Multi-level graph convolutional networks for cross-platform anchor link prediction. In: Proceedings of the 26th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 1503–1511 (2020) Mu et al. [2016] Mu, X., Zhu, F., Lim, E., Xiao, J., Wang, J., Zhou, Z.: User identity linkage by latent user space modelling. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD, pp. 1775–1784 (2016) Kong et al. [2013] Kong, X., Zhang, J., Yu, P.S.: Inferring anchor links across multiple heterogeneous social networks. In: Proceedings of the 22nd ACM International Conference on Information and Knowledge Management, CIKM’13, CIKM, pp. 179–188 (2013) Zhan et al. [2019] Zhan, Q., Zhang, J., Yu, P.S.: Integrated anchor and social link predictions across multiple social networks. Knowl. Inf. Syst. 60(1), 303–326 (2019) Zhang and Tong [2016] Zhang, S., Tong, H.: FINAL: fast attributed network alignment. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD, pp. 1345–1354 (2016) Bayati et al. [2009] Bayati, M., Gerritsen, M., Gleich, D.F., Saberi, A., Wang, Y.: Algorithms for large, sparse network alignment problems. In: Proceedings of the Ninth IEEE International Conference on Data Mining, ICDM, pp. 705–710 (2009) Wang et al. [2020] Wang, F., Sun, L., Zhang, Z.: Hyperbolic user identity linkage across social networks. In: Proceedings of the Global Communications Conference, GLOBECOM 2020, IEEE, pp. 1–6 (2020) Sun et al. [2020] Sun, L., Zhang, Z., Zhang, J., Wang, F., Du, Y., Su, S., Yu, P.S.: Perfect: A hyperbolic embedding for joint user and community alignment. In: Proceedings of the 20th IEEE International Conference on Data Mining, ICDM, pp. 501–510 (2020) Sun et al. [2022] Sun, L., Ye, J., Peng, H., Yu, P.S.: A self-supervised riemannian GNN with time varying curvature for temporal graph learning. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pp. 1827–1836 (2022) Bai et al. [2023] Bai, Q., Nie, C., Zhang, H., Zhao, D., Yuan, X.: Hgwavenet: A hyperbolic graph neural network for temporal link prediction. In: Proceedings of the ACM Web Conference 2023, WWW, pp. 523–532 (2023) Petersen [2006] Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Wu, W., Li, B., Luo, C., Nejdl, W.: Hashing-accelerated graph neural networks for link prediction. In: Proceedings of the Web Conference 2021, WWW, pp. 2910–2920 (2021) Liu et al. [2023] Liu, N., Wang, X., Han, H., Shi, C.: Hierarchical contrastive learning enhanced heterogeneous graph neural network. IEEE Trans. Knowl. Data Eng. 35(10), 10884–10896 (2023) Chen et al. [2021] Chen, H., Li, Y., Shi, S., Liu, S., Zhu, H., Zhang, Y.: Graph collaborative reasoning. CoRR abs/2112.13705 (2021) Chen et al. [2020] Chen, H., Yin, H., Sun, X., Chen, T., Gabrys, B., Musial, K.: Multi-level graph convolutional networks for cross-platform anchor link prediction. In: Proceedings of the 26th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 1503–1511 (2020) Mu et al. [2016] Mu, X., Zhu, F., Lim, E., Xiao, J., Wang, J., Zhou, Z.: User identity linkage by latent user space modelling. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD, pp. 1775–1784 (2016) Kong et al. [2013] Kong, X., Zhang, J., Yu, P.S.: Inferring anchor links across multiple heterogeneous social networks. In: Proceedings of the 22nd ACM International Conference on Information and Knowledge Management, CIKM’13, CIKM, pp. 179–188 (2013) Zhan et al. [2019] Zhan, Q., Zhang, J., Yu, P.S.: Integrated anchor and social link predictions across multiple social networks. Knowl. Inf. Syst. 60(1), 303–326 (2019) Zhang and Tong [2016] Zhang, S., Tong, H.: FINAL: fast attributed network alignment. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD, pp. 1345–1354 (2016) Bayati et al. [2009] Bayati, M., Gerritsen, M., Gleich, D.F., Saberi, A., Wang, Y.: Algorithms for large, sparse network alignment problems. In: Proceedings of the Ninth IEEE International Conference on Data Mining, ICDM, pp. 705–710 (2009) Wang et al. [2020] Wang, F., Sun, L., Zhang, Z.: Hyperbolic user identity linkage across social networks. In: Proceedings of the Global Communications Conference, GLOBECOM 2020, IEEE, pp. 1–6 (2020) Sun et al. [2020] Sun, L., Zhang, Z., Zhang, J., Wang, F., Du, Y., Su, S., Yu, P.S.: Perfect: A hyperbolic embedding for joint user and community alignment. In: Proceedings of the 20th IEEE International Conference on Data Mining, ICDM, pp. 501–510 (2020) Sun et al. [2022] Sun, L., Ye, J., Peng, H., Yu, P.S.: A self-supervised riemannian GNN with time varying curvature for temporal graph learning. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pp. 1827–1836 (2022) Bai et al. [2023] Bai, Q., Nie, C., Zhang, H., Zhao, D., Yuan, X.: Hgwavenet: A hyperbolic graph neural network for temporal link prediction. In: Proceedings of the ACM Web Conference 2023, WWW, pp. 523–532 (2023) Petersen [2006] Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, N., Wang, X., Han, H., Shi, C.: Hierarchical contrastive learning enhanced heterogeneous graph neural network. IEEE Trans. Knowl. Data Eng. 35(10), 10884–10896 (2023) Chen et al. [2021] Chen, H., Li, Y., Shi, S., Liu, S., Zhu, H., Zhang, Y.: Graph collaborative reasoning. CoRR abs/2112.13705 (2021) Chen et al. [2020] Chen, H., Yin, H., Sun, X., Chen, T., Gabrys, B., Musial, K.: Multi-level graph convolutional networks for cross-platform anchor link prediction. In: Proceedings of the 26th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 1503–1511 (2020) Mu et al. [2016] Mu, X., Zhu, F., Lim, E., Xiao, J., Wang, J., Zhou, Z.: User identity linkage by latent user space modelling. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD, pp. 1775–1784 (2016) Kong et al. [2013] Kong, X., Zhang, J., Yu, P.S.: Inferring anchor links across multiple heterogeneous social networks. In: Proceedings of the 22nd ACM International Conference on Information and Knowledge Management, CIKM’13, CIKM, pp. 179–188 (2013) Zhan et al. [2019] Zhan, Q., Zhang, J., Yu, P.S.: Integrated anchor and social link predictions across multiple social networks. Knowl. Inf. Syst. 60(1), 303–326 (2019) Zhang and Tong [2016] Zhang, S., Tong, H.: FINAL: fast attributed network alignment. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD, pp. 1345–1354 (2016) Bayati et al. [2009] Bayati, M., Gerritsen, M., Gleich, D.F., Saberi, A., Wang, Y.: Algorithms for large, sparse network alignment problems. In: Proceedings of the Ninth IEEE International Conference on Data Mining, ICDM, pp. 705–710 (2009) Wang et al. [2020] Wang, F., Sun, L., Zhang, Z.: Hyperbolic user identity linkage across social networks. In: Proceedings of the Global Communications Conference, GLOBECOM 2020, IEEE, pp. 1–6 (2020) Sun et al. [2020] Sun, L., Zhang, Z., Zhang, J., Wang, F., Du, Y., Su, S., Yu, P.S.: Perfect: A hyperbolic embedding for joint user and community alignment. In: Proceedings of the 20th IEEE International Conference on Data Mining, ICDM, pp. 501–510 (2020) Sun et al. [2022] Sun, L., Ye, J., Peng, H., Yu, P.S.: A self-supervised riemannian GNN with time varying curvature for temporal graph learning. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pp. 1827–1836 (2022) Bai et al. [2023] Bai, Q., Nie, C., Zhang, H., Zhao, D., Yuan, X.: Hgwavenet: A hyperbolic graph neural network for temporal link prediction. In: Proceedings of the ACM Web Conference 2023, WWW, pp. 523–532 (2023) Petersen [2006] Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Chen, H., Li, Y., Shi, S., Liu, S., Zhu, H., Zhang, Y.: Graph collaborative reasoning. CoRR abs/2112.13705 (2021) Chen et al. [2020] Chen, H., Yin, H., Sun, X., Chen, T., Gabrys, B., Musial, K.: Multi-level graph convolutional networks for cross-platform anchor link prediction. In: Proceedings of the 26th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 1503–1511 (2020) Mu et al. [2016] Mu, X., Zhu, F., Lim, E., Xiao, J., Wang, J., Zhou, Z.: User identity linkage by latent user space modelling. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD, pp. 1775–1784 (2016) Kong et al. [2013] Kong, X., Zhang, J., Yu, P.S.: Inferring anchor links across multiple heterogeneous social networks. In: Proceedings of the 22nd ACM International Conference on Information and Knowledge Management, CIKM’13, CIKM, pp. 179–188 (2013) Zhan et al. [2019] Zhan, Q., Zhang, J., Yu, P.S.: Integrated anchor and social link predictions across multiple social networks. Knowl. Inf. Syst. 60(1), 303–326 (2019) Zhang and Tong [2016] Zhang, S., Tong, H.: FINAL: fast attributed network alignment. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD, pp. 1345–1354 (2016) Bayati et al. [2009] Bayati, M., Gerritsen, M., Gleich, D.F., Saberi, A., Wang, Y.: Algorithms for large, sparse network alignment problems. In: Proceedings of the Ninth IEEE International Conference on Data Mining, ICDM, pp. 705–710 (2009) Wang et al. [2020] Wang, F., Sun, L., Zhang, Z.: Hyperbolic user identity linkage across social networks. In: Proceedings of the Global Communications Conference, GLOBECOM 2020, IEEE, pp. 1–6 (2020) Sun et al. [2020] Sun, L., Zhang, Z., Zhang, J., Wang, F., Du, Y., Su, S., Yu, P.S.: Perfect: A hyperbolic embedding for joint user and community alignment. In: Proceedings of the 20th IEEE International Conference on Data Mining, ICDM, pp. 501–510 (2020) Sun et al. [2022] Sun, L., Ye, J., Peng, H., Yu, P.S.: A self-supervised riemannian GNN with time varying curvature for temporal graph learning. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pp. 1827–1836 (2022) Bai et al. [2023] Bai, Q., Nie, C., Zhang, H., Zhao, D., Yuan, X.: Hgwavenet: A hyperbolic graph neural network for temporal link prediction. In: Proceedings of the ACM Web Conference 2023, WWW, pp. 523–532 (2023) Petersen [2006] Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Chen, H., Yin, H., Sun, X., Chen, T., Gabrys, B., Musial, K.: Multi-level graph convolutional networks for cross-platform anchor link prediction. In: Proceedings of the 26th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 1503–1511 (2020) Mu et al. [2016] Mu, X., Zhu, F., Lim, E., Xiao, J., Wang, J., Zhou, Z.: User identity linkage by latent user space modelling. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD, pp. 1775–1784 (2016) Kong et al. [2013] Kong, X., Zhang, J., Yu, P.S.: Inferring anchor links across multiple heterogeneous social networks. In: Proceedings of the 22nd ACM International Conference on Information and Knowledge Management, CIKM’13, CIKM, pp. 179–188 (2013) Zhan et al. [2019] Zhan, Q., Zhang, J., Yu, P.S.: Integrated anchor and social link predictions across multiple social networks. Knowl. Inf. Syst. 60(1), 303–326 (2019) Zhang and Tong [2016] Zhang, S., Tong, H.: FINAL: fast attributed network alignment. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD, pp. 1345–1354 (2016) Bayati et al. [2009] Bayati, M., Gerritsen, M., Gleich, D.F., Saberi, A., Wang, Y.: Algorithms for large, sparse network alignment problems. In: Proceedings of the Ninth IEEE International Conference on Data Mining, ICDM, pp. 705–710 (2009) Wang et al. [2020] Wang, F., Sun, L., Zhang, Z.: Hyperbolic user identity linkage across social networks. In: Proceedings of the Global Communications Conference, GLOBECOM 2020, IEEE, pp. 1–6 (2020) Sun et al. [2020] Sun, L., Zhang, Z., Zhang, J., Wang, F., Du, Y., Su, S., Yu, P.S.: Perfect: A hyperbolic embedding for joint user and community alignment. In: Proceedings of the 20th IEEE International Conference on Data Mining, ICDM, pp. 501–510 (2020) Sun et al. [2022] Sun, L., Ye, J., Peng, H., Yu, P.S.: A self-supervised riemannian GNN with time varying curvature for temporal graph learning. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pp. 1827–1836 (2022) Bai et al. [2023] Bai, Q., Nie, C., Zhang, H., Zhao, D., Yuan, X.: Hgwavenet: A hyperbolic graph neural network for temporal link prediction. In: Proceedings of the ACM Web Conference 2023, WWW, pp. 523–532 (2023) Petersen [2006] Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Mu, X., Zhu, F., Lim, E., Xiao, J., Wang, J., Zhou, Z.: User identity linkage by latent user space modelling. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD, pp. 1775–1784 (2016) Kong et al. [2013] Kong, X., Zhang, J., Yu, P.S.: Inferring anchor links across multiple heterogeneous social networks. In: Proceedings of the 22nd ACM International Conference on Information and Knowledge Management, CIKM’13, CIKM, pp. 179–188 (2013) Zhan et al. [2019] Zhan, Q., Zhang, J., Yu, P.S.: Integrated anchor and social link predictions across multiple social networks. Knowl. Inf. Syst. 60(1), 303–326 (2019) Zhang and Tong [2016] Zhang, S., Tong, H.: FINAL: fast attributed network alignment. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD, pp. 1345–1354 (2016) Bayati et al. [2009] Bayati, M., Gerritsen, M., Gleich, D.F., Saberi, A., Wang, Y.: Algorithms for large, sparse network alignment problems. In: Proceedings of the Ninth IEEE International Conference on Data Mining, ICDM, pp. 705–710 (2009) Wang et al. [2020] Wang, F., Sun, L., Zhang, Z.: Hyperbolic user identity linkage across social networks. In: Proceedings of the Global Communications Conference, GLOBECOM 2020, IEEE, pp. 1–6 (2020) Sun et al. [2020] Sun, L., Zhang, Z., Zhang, J., Wang, F., Du, Y., Su, S., Yu, P.S.: Perfect: A hyperbolic embedding for joint user and community alignment. In: Proceedings of the 20th IEEE International Conference on Data Mining, ICDM, pp. 501–510 (2020) Sun et al. [2022] Sun, L., Ye, J., Peng, H., Yu, P.S.: A self-supervised riemannian GNN with time varying curvature for temporal graph learning. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pp. 1827–1836 (2022) Bai et al. [2023] Bai, Q., Nie, C., Zhang, H., Zhao, D., Yuan, X.: Hgwavenet: A hyperbolic graph neural network for temporal link prediction. In: Proceedings of the ACM Web Conference 2023, WWW, pp. 523–532 (2023) Petersen [2006] Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Kong, X., Zhang, J., Yu, P.S.: Inferring anchor links across multiple heterogeneous social networks. In: Proceedings of the 22nd ACM International Conference on Information and Knowledge Management, CIKM’13, CIKM, pp. 179–188 (2013) Zhan et al. [2019] Zhan, Q., Zhang, J., Yu, P.S.: Integrated anchor and social link predictions across multiple social networks. Knowl. Inf. Syst. 60(1), 303–326 (2019) Zhang and Tong [2016] Zhang, S., Tong, H.: FINAL: fast attributed network alignment. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD, pp. 1345–1354 (2016) Bayati et al. [2009] Bayati, M., Gerritsen, M., Gleich, D.F., Saberi, A., Wang, Y.: Algorithms for large, sparse network alignment problems. In: Proceedings of the Ninth IEEE International Conference on Data Mining, ICDM, pp. 705–710 (2009) Wang et al. [2020] Wang, F., Sun, L., Zhang, Z.: Hyperbolic user identity linkage across social networks. In: Proceedings of the Global Communications Conference, GLOBECOM 2020, IEEE, pp. 1–6 (2020) Sun et al. [2020] Sun, L., Zhang, Z., Zhang, J., Wang, F., Du, Y., Su, S., Yu, P.S.: Perfect: A hyperbolic embedding for joint user and community alignment. In: Proceedings of the 20th IEEE International Conference on Data Mining, ICDM, pp. 501–510 (2020) Sun et al. [2022] Sun, L., Ye, J., Peng, H., Yu, P.S.: A self-supervised riemannian GNN with time varying curvature for temporal graph learning. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pp. 1827–1836 (2022) Bai et al. [2023] Bai, Q., Nie, C., Zhang, H., Zhao, D., Yuan, X.: Hgwavenet: A hyperbolic graph neural network for temporal link prediction. In: Proceedings of the ACM Web Conference 2023, WWW, pp. 523–532 (2023) Petersen [2006] Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhan, Q., Zhang, J., Yu, P.S.: Integrated anchor and social link predictions across multiple social networks. Knowl. Inf. Syst. 60(1), 303–326 (2019) Zhang and Tong [2016] Zhang, S., Tong, H.: FINAL: fast attributed network alignment. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD, pp. 1345–1354 (2016) Bayati et al. [2009] Bayati, M., Gerritsen, M., Gleich, D.F., Saberi, A., Wang, Y.: Algorithms for large, sparse network alignment problems. In: Proceedings of the Ninth IEEE International Conference on Data Mining, ICDM, pp. 705–710 (2009) Wang et al. [2020] Wang, F., Sun, L., Zhang, Z.: Hyperbolic user identity linkage across social networks. In: Proceedings of the Global Communications Conference, GLOBECOM 2020, IEEE, pp. 1–6 (2020) Sun et al. [2020] Sun, L., Zhang, Z., Zhang, J., Wang, F., Du, Y., Su, S., Yu, P.S.: Perfect: A hyperbolic embedding for joint user and community alignment. In: Proceedings of the 20th IEEE International Conference on Data Mining, ICDM, pp. 501–510 (2020) Sun et al. [2022] Sun, L., Ye, J., Peng, H., Yu, P.S.: A self-supervised riemannian GNN with time varying curvature for temporal graph learning. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pp. 1827–1836 (2022) Bai et al. [2023] Bai, Q., Nie, C., Zhang, H., Zhao, D., Yuan, X.: Hgwavenet: A hyperbolic graph neural network for temporal link prediction. In: Proceedings of the ACM Web Conference 2023, WWW, pp. 523–532 (2023) Petersen [2006] Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhang, S., Tong, H.: FINAL: fast attributed network alignment. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD, pp. 1345–1354 (2016) Bayati et al. [2009] Bayati, M., Gerritsen, M., Gleich, D.F., Saberi, A., Wang, Y.: Algorithms for large, sparse network alignment problems. In: Proceedings of the Ninth IEEE International Conference on Data Mining, ICDM, pp. 705–710 (2009) Wang et al. [2020] Wang, F., Sun, L., Zhang, Z.: Hyperbolic user identity linkage across social networks. In: Proceedings of the Global Communications Conference, GLOBECOM 2020, IEEE, pp. 1–6 (2020) Sun et al. [2020] Sun, L., Zhang, Z., Zhang, J., Wang, F., Du, Y., Su, S., Yu, P.S.: Perfect: A hyperbolic embedding for joint user and community alignment. In: Proceedings of the 20th IEEE International Conference on Data Mining, ICDM, pp. 501–510 (2020) Sun et al. [2022] Sun, L., Ye, J., Peng, H., Yu, P.S.: A self-supervised riemannian GNN with time varying curvature for temporal graph learning. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pp. 1827–1836 (2022) Bai et al. [2023] Bai, Q., Nie, C., Zhang, H., Zhao, D., Yuan, X.: Hgwavenet: A hyperbolic graph neural network for temporal link prediction. In: Proceedings of the ACM Web Conference 2023, WWW, pp. 523–532 (2023) Petersen [2006] Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Bayati, M., Gerritsen, M., Gleich, D.F., Saberi, A., Wang, Y.: Algorithms for large, sparse network alignment problems. In: Proceedings of the Ninth IEEE International Conference on Data Mining, ICDM, pp. 705–710 (2009) Wang et al. [2020] Wang, F., Sun, L., Zhang, Z.: Hyperbolic user identity linkage across social networks. In: Proceedings of the Global Communications Conference, GLOBECOM 2020, IEEE, pp. 1–6 (2020) Sun et al. [2020] Sun, L., Zhang, Z., Zhang, J., Wang, F., Du, Y., Su, S., Yu, P.S.: Perfect: A hyperbolic embedding for joint user and community alignment. In: Proceedings of the 20th IEEE International Conference on Data Mining, ICDM, pp. 501–510 (2020) Sun et al. [2022] Sun, L., Ye, J., Peng, H., Yu, P.S.: A self-supervised riemannian GNN with time varying curvature for temporal graph learning. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pp. 1827–1836 (2022) Bai et al. [2023] Bai, Q., Nie, C., Zhang, H., Zhao, D., Yuan, X.: Hgwavenet: A hyperbolic graph neural network for temporal link prediction. In: Proceedings of the ACM Web Conference 2023, WWW, pp. 523–532 (2023) Petersen [2006] Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Wang, F., Sun, L., Zhang, Z.: Hyperbolic user identity linkage across social networks. In: Proceedings of the Global Communications Conference, GLOBECOM 2020, IEEE, pp. 1–6 (2020) Sun et al. [2020] Sun, L., Zhang, Z., Zhang, J., Wang, F., Du, Y., Su, S., Yu, P.S.: Perfect: A hyperbolic embedding for joint user and community alignment. In: Proceedings of the 20th IEEE International Conference on Data Mining, ICDM, pp. 501–510 (2020) Sun et al. [2022] Sun, L., Ye, J., Peng, H., Yu, P.S.: A self-supervised riemannian GNN with time varying curvature for temporal graph learning. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pp. 1827–1836 (2022) Bai et al. [2023] Bai, Q., Nie, C., Zhang, H., Zhao, D., Yuan, X.: Hgwavenet: A hyperbolic graph neural network for temporal link prediction. In: Proceedings of the ACM Web Conference 2023, WWW, pp. 523–532 (2023) Petersen [2006] Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Zhang, J., Wang, F., Du, Y., Su, S., Yu, P.S.: Perfect: A hyperbolic embedding for joint user and community alignment. In: Proceedings of the 20th IEEE International Conference on Data Mining, ICDM, pp. 501–510 (2020) Sun et al. [2022] Sun, L., Ye, J., Peng, H., Yu, P.S.: A self-supervised riemannian GNN with time varying curvature for temporal graph learning. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pp. 1827–1836 (2022) Bai et al. [2023] Bai, Q., Nie, C., Zhang, H., Zhao, D., Yuan, X.: Hgwavenet: A hyperbolic graph neural network for temporal link prediction. In: Proceedings of the ACM Web Conference 2023, WWW, pp. 523–532 (2023) Petersen [2006] Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Ye, J., Peng, H., Yu, P.S.: A self-supervised riemannian GNN with time varying curvature for temporal graph learning. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pp. 1827–1836 (2022) Bai et al. [2023] Bai, Q., Nie, C., Zhang, H., Zhao, D., Yuan, X.: Hgwavenet: A hyperbolic graph neural network for temporal link prediction. In: Proceedings of the ACM Web Conference 2023, WWW, pp. 523–532 (2023) Petersen [2006] Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Bai, Q., Nie, C., Zhang, H., Zhao, D., Yuan, X.: Hgwavenet: A hyperbolic graph neural network for temporal link prediction. In: Proceedings of the ACM Web Conference 2023, WWW, pp. 523–532 (2023) Petersen [2006] Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022)
- Wu, W., Li, B., Luo, C., Nejdl, W.: Hashing-accelerated graph neural networks for link prediction. In: Proceedings of the Web Conference 2021, WWW, pp. 2910–2920 (2021) Liu et al. [2023] Liu, N., Wang, X., Han, H., Shi, C.: Hierarchical contrastive learning enhanced heterogeneous graph neural network. IEEE Trans. Knowl. Data Eng. 35(10), 10884–10896 (2023) Chen et al. [2021] Chen, H., Li, Y., Shi, S., Liu, S., Zhu, H., Zhang, Y.: Graph collaborative reasoning. CoRR abs/2112.13705 (2021) Chen et al. [2020] Chen, H., Yin, H., Sun, X., Chen, T., Gabrys, B., Musial, K.: Multi-level graph convolutional networks for cross-platform anchor link prediction. In: Proceedings of the 26th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 1503–1511 (2020) Mu et al. [2016] Mu, X., Zhu, F., Lim, E., Xiao, J., Wang, J., Zhou, Z.: User identity linkage by latent user space modelling. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD, pp. 1775–1784 (2016) Kong et al. [2013] Kong, X., Zhang, J., Yu, P.S.: Inferring anchor links across multiple heterogeneous social networks. In: Proceedings of the 22nd ACM International Conference on Information and Knowledge Management, CIKM’13, CIKM, pp. 179–188 (2013) Zhan et al. [2019] Zhan, Q., Zhang, J., Yu, P.S.: Integrated anchor and social link predictions across multiple social networks. Knowl. Inf. Syst. 60(1), 303–326 (2019) Zhang and Tong [2016] Zhang, S., Tong, H.: FINAL: fast attributed network alignment. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD, pp. 1345–1354 (2016) Bayati et al. [2009] Bayati, M., Gerritsen, M., Gleich, D.F., Saberi, A., Wang, Y.: Algorithms for large, sparse network alignment problems. In: Proceedings of the Ninth IEEE International Conference on Data Mining, ICDM, pp. 705–710 (2009) Wang et al. [2020] Wang, F., Sun, L., Zhang, Z.: Hyperbolic user identity linkage across social networks. In: Proceedings of the Global Communications Conference, GLOBECOM 2020, IEEE, pp. 1–6 (2020) Sun et al. [2020] Sun, L., Zhang, Z., Zhang, J., Wang, F., Du, Y., Su, S., Yu, P.S.: Perfect: A hyperbolic embedding for joint user and community alignment. In: Proceedings of the 20th IEEE International Conference on Data Mining, ICDM, pp. 501–510 (2020) Sun et al. [2022] Sun, L., Ye, J., Peng, H., Yu, P.S.: A self-supervised riemannian GNN with time varying curvature for temporal graph learning. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pp. 1827–1836 (2022) Bai et al. [2023] Bai, Q., Nie, C., Zhang, H., Zhao, D., Yuan, X.: Hgwavenet: A hyperbolic graph neural network for temporal link prediction. In: Proceedings of the ACM Web Conference 2023, WWW, pp. 523–532 (2023) Petersen [2006] Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, N., Wang, X., Han, H., Shi, C.: Hierarchical contrastive learning enhanced heterogeneous graph neural network. IEEE Trans. Knowl. Data Eng. 35(10), 10884–10896 (2023) Chen et al. [2021] Chen, H., Li, Y., Shi, S., Liu, S., Zhu, H., Zhang, Y.: Graph collaborative reasoning. CoRR abs/2112.13705 (2021) Chen et al. [2020] Chen, H., Yin, H., Sun, X., Chen, T., Gabrys, B., Musial, K.: Multi-level graph convolutional networks for cross-platform anchor link prediction. In: Proceedings of the 26th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 1503–1511 (2020) Mu et al. [2016] Mu, X., Zhu, F., Lim, E., Xiao, J., Wang, J., Zhou, Z.: User identity linkage by latent user space modelling. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD, pp. 1775–1784 (2016) Kong et al. [2013] Kong, X., Zhang, J., Yu, P.S.: Inferring anchor links across multiple heterogeneous social networks. In: Proceedings of the 22nd ACM International Conference on Information and Knowledge Management, CIKM’13, CIKM, pp. 179–188 (2013) Zhan et al. [2019] Zhan, Q., Zhang, J., Yu, P.S.: Integrated anchor and social link predictions across multiple social networks. Knowl. Inf. Syst. 60(1), 303–326 (2019) Zhang and Tong [2016] Zhang, S., Tong, H.: FINAL: fast attributed network alignment. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD, pp. 1345–1354 (2016) Bayati et al. [2009] Bayati, M., Gerritsen, M., Gleich, D.F., Saberi, A., Wang, Y.: Algorithms for large, sparse network alignment problems. In: Proceedings of the Ninth IEEE International Conference on Data Mining, ICDM, pp. 705–710 (2009) Wang et al. [2020] Wang, F., Sun, L., Zhang, Z.: Hyperbolic user identity linkage across social networks. In: Proceedings of the Global Communications Conference, GLOBECOM 2020, IEEE, pp. 1–6 (2020) Sun et al. [2020] Sun, L., Zhang, Z., Zhang, J., Wang, F., Du, Y., Su, S., Yu, P.S.: Perfect: A hyperbolic embedding for joint user and community alignment. In: Proceedings of the 20th IEEE International Conference on Data Mining, ICDM, pp. 501–510 (2020) Sun et al. [2022] Sun, L., Ye, J., Peng, H., Yu, P.S.: A self-supervised riemannian GNN with time varying curvature for temporal graph learning. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pp. 1827–1836 (2022) Bai et al. [2023] Bai, Q., Nie, C., Zhang, H., Zhao, D., Yuan, X.: Hgwavenet: A hyperbolic graph neural network for temporal link prediction. In: Proceedings of the ACM Web Conference 2023, WWW, pp. 523–532 (2023) Petersen [2006] Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Chen, H., Li, Y., Shi, S., Liu, S., Zhu, H., Zhang, Y.: Graph collaborative reasoning. CoRR abs/2112.13705 (2021) Chen et al. [2020] Chen, H., Yin, H., Sun, X., Chen, T., Gabrys, B., Musial, K.: Multi-level graph convolutional networks for cross-platform anchor link prediction. In: Proceedings of the 26th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 1503–1511 (2020) Mu et al. [2016] Mu, X., Zhu, F., Lim, E., Xiao, J., Wang, J., Zhou, Z.: User identity linkage by latent user space modelling. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD, pp. 1775–1784 (2016) Kong et al. [2013] Kong, X., Zhang, J., Yu, P.S.: Inferring anchor links across multiple heterogeneous social networks. In: Proceedings of the 22nd ACM International Conference on Information and Knowledge Management, CIKM’13, CIKM, pp. 179–188 (2013) Zhan et al. [2019] Zhan, Q., Zhang, J., Yu, P.S.: Integrated anchor and social link predictions across multiple social networks. Knowl. Inf. Syst. 60(1), 303–326 (2019) Zhang and Tong [2016] Zhang, S., Tong, H.: FINAL: fast attributed network alignment. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD, pp. 1345–1354 (2016) Bayati et al. [2009] Bayati, M., Gerritsen, M., Gleich, D.F., Saberi, A., Wang, Y.: Algorithms for large, sparse network alignment problems. In: Proceedings of the Ninth IEEE International Conference on Data Mining, ICDM, pp. 705–710 (2009) Wang et al. [2020] Wang, F., Sun, L., Zhang, Z.: Hyperbolic user identity linkage across social networks. In: Proceedings of the Global Communications Conference, GLOBECOM 2020, IEEE, pp. 1–6 (2020) Sun et al. [2020] Sun, L., Zhang, Z., Zhang, J., Wang, F., Du, Y., Su, S., Yu, P.S.: Perfect: A hyperbolic embedding for joint user and community alignment. In: Proceedings of the 20th IEEE International Conference on Data Mining, ICDM, pp. 501–510 (2020) Sun et al. [2022] Sun, L., Ye, J., Peng, H., Yu, P.S.: A self-supervised riemannian GNN with time varying curvature for temporal graph learning. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pp. 1827–1836 (2022) Bai et al. [2023] Bai, Q., Nie, C., Zhang, H., Zhao, D., Yuan, X.: Hgwavenet: A hyperbolic graph neural network for temporal link prediction. In: Proceedings of the ACM Web Conference 2023, WWW, pp. 523–532 (2023) Petersen [2006] Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Chen, H., Yin, H., Sun, X., Chen, T., Gabrys, B., Musial, K.: Multi-level graph convolutional networks for cross-platform anchor link prediction. In: Proceedings of the 26th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 1503–1511 (2020) Mu et al. [2016] Mu, X., Zhu, F., Lim, E., Xiao, J., Wang, J., Zhou, Z.: User identity linkage by latent user space modelling. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD, pp. 1775–1784 (2016) Kong et al. [2013] Kong, X., Zhang, J., Yu, P.S.: Inferring anchor links across multiple heterogeneous social networks. In: Proceedings of the 22nd ACM International Conference on Information and Knowledge Management, CIKM’13, CIKM, pp. 179–188 (2013) Zhan et al. [2019] Zhan, Q., Zhang, J., Yu, P.S.: Integrated anchor and social link predictions across multiple social networks. Knowl. Inf. Syst. 60(1), 303–326 (2019) Zhang and Tong [2016] Zhang, S., Tong, H.: FINAL: fast attributed network alignment. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD, pp. 1345–1354 (2016) Bayati et al. [2009] Bayati, M., Gerritsen, M., Gleich, D.F., Saberi, A., Wang, Y.: Algorithms for large, sparse network alignment problems. In: Proceedings of the Ninth IEEE International Conference on Data Mining, ICDM, pp. 705–710 (2009) Wang et al. [2020] Wang, F., Sun, L., Zhang, Z.: Hyperbolic user identity linkage across social networks. In: Proceedings of the Global Communications Conference, GLOBECOM 2020, IEEE, pp. 1–6 (2020) Sun et al. [2020] Sun, L., Zhang, Z., Zhang, J., Wang, F., Du, Y., Su, S., Yu, P.S.: Perfect: A hyperbolic embedding for joint user and community alignment. In: Proceedings of the 20th IEEE International Conference on Data Mining, ICDM, pp. 501–510 (2020) Sun et al. [2022] Sun, L., Ye, J., Peng, H., Yu, P.S.: A self-supervised riemannian GNN with time varying curvature for temporal graph learning. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pp. 1827–1836 (2022) Bai et al. [2023] Bai, Q., Nie, C., Zhang, H., Zhao, D., Yuan, X.: Hgwavenet: A hyperbolic graph neural network for temporal link prediction. In: Proceedings of the ACM Web Conference 2023, WWW, pp. 523–532 (2023) Petersen [2006] Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Mu, X., Zhu, F., Lim, E., Xiao, J., Wang, J., Zhou, Z.: User identity linkage by latent user space modelling. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD, pp. 1775–1784 (2016) Kong et al. [2013] Kong, X., Zhang, J., Yu, P.S.: Inferring anchor links across multiple heterogeneous social networks. In: Proceedings of the 22nd ACM International Conference on Information and Knowledge Management, CIKM’13, CIKM, pp. 179–188 (2013) Zhan et al. [2019] Zhan, Q., Zhang, J., Yu, P.S.: Integrated anchor and social link predictions across multiple social networks. Knowl. Inf. Syst. 60(1), 303–326 (2019) Zhang and Tong [2016] Zhang, S., Tong, H.: FINAL: fast attributed network alignment. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD, pp. 1345–1354 (2016) Bayati et al. [2009] Bayati, M., Gerritsen, M., Gleich, D.F., Saberi, A., Wang, Y.: Algorithms for large, sparse network alignment problems. In: Proceedings of the Ninth IEEE International Conference on Data Mining, ICDM, pp. 705–710 (2009) Wang et al. [2020] Wang, F., Sun, L., Zhang, Z.: Hyperbolic user identity linkage across social networks. In: Proceedings of the Global Communications Conference, GLOBECOM 2020, IEEE, pp. 1–6 (2020) Sun et al. [2020] Sun, L., Zhang, Z., Zhang, J., Wang, F., Du, Y., Su, S., Yu, P.S.: Perfect: A hyperbolic embedding for joint user and community alignment. In: Proceedings of the 20th IEEE International Conference on Data Mining, ICDM, pp. 501–510 (2020) Sun et al. [2022] Sun, L., Ye, J., Peng, H., Yu, P.S.: A self-supervised riemannian GNN with time varying curvature for temporal graph learning. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pp. 1827–1836 (2022) Bai et al. [2023] Bai, Q., Nie, C., Zhang, H., Zhao, D., Yuan, X.: Hgwavenet: A hyperbolic graph neural network for temporal link prediction. In: Proceedings of the ACM Web Conference 2023, WWW, pp. 523–532 (2023) Petersen [2006] Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Kong, X., Zhang, J., Yu, P.S.: Inferring anchor links across multiple heterogeneous social networks. In: Proceedings of the 22nd ACM International Conference on Information and Knowledge Management, CIKM’13, CIKM, pp. 179–188 (2013) Zhan et al. [2019] Zhan, Q., Zhang, J., Yu, P.S.: Integrated anchor and social link predictions across multiple social networks. Knowl. Inf. Syst. 60(1), 303–326 (2019) Zhang and Tong [2016] Zhang, S., Tong, H.: FINAL: fast attributed network alignment. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD, pp. 1345–1354 (2016) Bayati et al. [2009] Bayati, M., Gerritsen, M., Gleich, D.F., Saberi, A., Wang, Y.: Algorithms for large, sparse network alignment problems. In: Proceedings of the Ninth IEEE International Conference on Data Mining, ICDM, pp. 705–710 (2009) Wang et al. [2020] Wang, F., Sun, L., Zhang, Z.: Hyperbolic user identity linkage across social networks. In: Proceedings of the Global Communications Conference, GLOBECOM 2020, IEEE, pp. 1–6 (2020) Sun et al. [2020] Sun, L., Zhang, Z., Zhang, J., Wang, F., Du, Y., Su, S., Yu, P.S.: Perfect: A hyperbolic embedding for joint user and community alignment. In: Proceedings of the 20th IEEE International Conference on Data Mining, ICDM, pp. 501–510 (2020) Sun et al. [2022] Sun, L., Ye, J., Peng, H., Yu, P.S.: A self-supervised riemannian GNN with time varying curvature for temporal graph learning. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pp. 1827–1836 (2022) Bai et al. [2023] Bai, Q., Nie, C., Zhang, H., Zhao, D., Yuan, X.: Hgwavenet: A hyperbolic graph neural network for temporal link prediction. In: Proceedings of the ACM Web Conference 2023, WWW, pp. 523–532 (2023) Petersen [2006] Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhan, Q., Zhang, J., Yu, P.S.: Integrated anchor and social link predictions across multiple social networks. Knowl. Inf. Syst. 60(1), 303–326 (2019) Zhang and Tong [2016] Zhang, S., Tong, H.: FINAL: fast attributed network alignment. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD, pp. 1345–1354 (2016) Bayati et al. [2009] Bayati, M., Gerritsen, M., Gleich, D.F., Saberi, A., Wang, Y.: Algorithms for large, sparse network alignment problems. In: Proceedings of the Ninth IEEE International Conference on Data Mining, ICDM, pp. 705–710 (2009) Wang et al. [2020] Wang, F., Sun, L., Zhang, Z.: Hyperbolic user identity linkage across social networks. In: Proceedings of the Global Communications Conference, GLOBECOM 2020, IEEE, pp. 1–6 (2020) Sun et al. [2020] Sun, L., Zhang, Z., Zhang, J., Wang, F., Du, Y., Su, S., Yu, P.S.: Perfect: A hyperbolic embedding for joint user and community alignment. In: Proceedings of the 20th IEEE International Conference on Data Mining, ICDM, pp. 501–510 (2020) Sun et al. [2022] Sun, L., Ye, J., Peng, H., Yu, P.S.: A self-supervised riemannian GNN with time varying curvature for temporal graph learning. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pp. 1827–1836 (2022) Bai et al. [2023] Bai, Q., Nie, C., Zhang, H., Zhao, D., Yuan, X.: Hgwavenet: A hyperbolic graph neural network for temporal link prediction. In: Proceedings of the ACM Web Conference 2023, WWW, pp. 523–532 (2023) Petersen [2006] Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhang, S., Tong, H.: FINAL: fast attributed network alignment. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD, pp. 1345–1354 (2016) Bayati et al. [2009] Bayati, M., Gerritsen, M., Gleich, D.F., Saberi, A., Wang, Y.: Algorithms for large, sparse network alignment problems. In: Proceedings of the Ninth IEEE International Conference on Data Mining, ICDM, pp. 705–710 (2009) Wang et al. [2020] Wang, F., Sun, L., Zhang, Z.: Hyperbolic user identity linkage across social networks. In: Proceedings of the Global Communications Conference, GLOBECOM 2020, IEEE, pp. 1–6 (2020) Sun et al. [2020] Sun, L., Zhang, Z., Zhang, J., Wang, F., Du, Y., Su, S., Yu, P.S.: Perfect: A hyperbolic embedding for joint user and community alignment. In: Proceedings of the 20th IEEE International Conference on Data Mining, ICDM, pp. 501–510 (2020) Sun et al. [2022] Sun, L., Ye, J., Peng, H., Yu, P.S.: A self-supervised riemannian GNN with time varying curvature for temporal graph learning. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pp. 1827–1836 (2022) Bai et al. [2023] Bai, Q., Nie, C., Zhang, H., Zhao, D., Yuan, X.: Hgwavenet: A hyperbolic graph neural network for temporal link prediction. In: Proceedings of the ACM Web Conference 2023, WWW, pp. 523–532 (2023) Petersen [2006] Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Bayati, M., Gerritsen, M., Gleich, D.F., Saberi, A., Wang, Y.: Algorithms for large, sparse network alignment problems. In: Proceedings of the Ninth IEEE International Conference on Data Mining, ICDM, pp. 705–710 (2009) Wang et al. [2020] Wang, F., Sun, L., Zhang, Z.: Hyperbolic user identity linkage across social networks. In: Proceedings of the Global Communications Conference, GLOBECOM 2020, IEEE, pp. 1–6 (2020) Sun et al. [2020] Sun, L., Zhang, Z., Zhang, J., Wang, F., Du, Y., Su, S., Yu, P.S.: Perfect: A hyperbolic embedding for joint user and community alignment. In: Proceedings of the 20th IEEE International Conference on Data Mining, ICDM, pp. 501–510 (2020) Sun et al. [2022] Sun, L., Ye, J., Peng, H., Yu, P.S.: A self-supervised riemannian GNN with time varying curvature for temporal graph learning. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pp. 1827–1836 (2022) Bai et al. [2023] Bai, Q., Nie, C., Zhang, H., Zhao, D., Yuan, X.: Hgwavenet: A hyperbolic graph neural network for temporal link prediction. In: Proceedings of the ACM Web Conference 2023, WWW, pp. 523–532 (2023) Petersen [2006] Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Wang, F., Sun, L., Zhang, Z.: Hyperbolic user identity linkage across social networks. In: Proceedings of the Global Communications Conference, GLOBECOM 2020, IEEE, pp. 1–6 (2020) Sun et al. [2020] Sun, L., Zhang, Z., Zhang, J., Wang, F., Du, Y., Su, S., Yu, P.S.: Perfect: A hyperbolic embedding for joint user and community alignment. In: Proceedings of the 20th IEEE International Conference on Data Mining, ICDM, pp. 501–510 (2020) Sun et al. [2022] Sun, L., Ye, J., Peng, H., Yu, P.S.: A self-supervised riemannian GNN with time varying curvature for temporal graph learning. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pp. 1827–1836 (2022) Bai et al. [2023] Bai, Q., Nie, C., Zhang, H., Zhao, D., Yuan, X.: Hgwavenet: A hyperbolic graph neural network for temporal link prediction. In: Proceedings of the ACM Web Conference 2023, WWW, pp. 523–532 (2023) Petersen [2006] Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Zhang, J., Wang, F., Du, Y., Su, S., Yu, P.S.: Perfect: A hyperbolic embedding for joint user and community alignment. In: Proceedings of the 20th IEEE International Conference on Data Mining, ICDM, pp. 501–510 (2020) Sun et al. [2022] Sun, L., Ye, J., Peng, H., Yu, P.S.: A self-supervised riemannian GNN with time varying curvature for temporal graph learning. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pp. 1827–1836 (2022) Bai et al. [2023] Bai, Q., Nie, C., Zhang, H., Zhao, D., Yuan, X.: Hgwavenet: A hyperbolic graph neural network for temporal link prediction. In: Proceedings of the ACM Web Conference 2023, WWW, pp. 523–532 (2023) Petersen [2006] Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Ye, J., Peng, H., Yu, P.S.: A self-supervised riemannian GNN with time varying curvature for temporal graph learning. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pp. 1827–1836 (2022) Bai et al. [2023] Bai, Q., Nie, C., Zhang, H., Zhao, D., Yuan, X.: Hgwavenet: A hyperbolic graph neural network for temporal link prediction. In: Proceedings of the ACM Web Conference 2023, WWW, pp. 523–532 (2023) Petersen [2006] Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Bai, Q., Nie, C., Zhang, H., Zhao, D., Yuan, X.: Hgwavenet: A hyperbolic graph neural network for temporal link prediction. In: Proceedings of the ACM Web Conference 2023, WWW, pp. 523–532 (2023) Petersen [2006] Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022)
- Liu, N., Wang, X., Han, H., Shi, C.: Hierarchical contrastive learning enhanced heterogeneous graph neural network. IEEE Trans. Knowl. Data Eng. 35(10), 10884–10896 (2023) Chen et al. [2021] Chen, H., Li, Y., Shi, S., Liu, S., Zhu, H., Zhang, Y.: Graph collaborative reasoning. CoRR abs/2112.13705 (2021) Chen et al. [2020] Chen, H., Yin, H., Sun, X., Chen, T., Gabrys, B., Musial, K.: Multi-level graph convolutional networks for cross-platform anchor link prediction. In: Proceedings of the 26th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 1503–1511 (2020) Mu et al. [2016] Mu, X., Zhu, F., Lim, E., Xiao, J., Wang, J., Zhou, Z.: User identity linkage by latent user space modelling. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD, pp. 1775–1784 (2016) Kong et al. [2013] Kong, X., Zhang, J., Yu, P.S.: Inferring anchor links across multiple heterogeneous social networks. In: Proceedings of the 22nd ACM International Conference on Information and Knowledge Management, CIKM’13, CIKM, pp. 179–188 (2013) Zhan et al. [2019] Zhan, Q., Zhang, J., Yu, P.S.: Integrated anchor and social link predictions across multiple social networks. Knowl. Inf. Syst. 60(1), 303–326 (2019) Zhang and Tong [2016] Zhang, S., Tong, H.: FINAL: fast attributed network alignment. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD, pp. 1345–1354 (2016) Bayati et al. [2009] Bayati, M., Gerritsen, M., Gleich, D.F., Saberi, A., Wang, Y.: Algorithms for large, sparse network alignment problems. In: Proceedings of the Ninth IEEE International Conference on Data Mining, ICDM, pp. 705–710 (2009) Wang et al. [2020] Wang, F., Sun, L., Zhang, Z.: Hyperbolic user identity linkage across social networks. In: Proceedings of the Global Communications Conference, GLOBECOM 2020, IEEE, pp. 1–6 (2020) Sun et al. [2020] Sun, L., Zhang, Z., Zhang, J., Wang, F., Du, Y., Su, S., Yu, P.S.: Perfect: A hyperbolic embedding for joint user and community alignment. In: Proceedings of the 20th IEEE International Conference on Data Mining, ICDM, pp. 501–510 (2020) Sun et al. [2022] Sun, L., Ye, J., Peng, H., Yu, P.S.: A self-supervised riemannian GNN with time varying curvature for temporal graph learning. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pp. 1827–1836 (2022) Bai et al. [2023] Bai, Q., Nie, C., Zhang, H., Zhao, D., Yuan, X.: Hgwavenet: A hyperbolic graph neural network for temporal link prediction. In: Proceedings of the ACM Web Conference 2023, WWW, pp. 523–532 (2023) Petersen [2006] Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Chen, H., Li, Y., Shi, S., Liu, S., Zhu, H., Zhang, Y.: Graph collaborative reasoning. CoRR abs/2112.13705 (2021) Chen et al. [2020] Chen, H., Yin, H., Sun, X., Chen, T., Gabrys, B., Musial, K.: Multi-level graph convolutional networks for cross-platform anchor link prediction. In: Proceedings of the 26th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 1503–1511 (2020) Mu et al. [2016] Mu, X., Zhu, F., Lim, E., Xiao, J., Wang, J., Zhou, Z.: User identity linkage by latent user space modelling. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD, pp. 1775–1784 (2016) Kong et al. [2013] Kong, X., Zhang, J., Yu, P.S.: Inferring anchor links across multiple heterogeneous social networks. In: Proceedings of the 22nd ACM International Conference on Information and Knowledge Management, CIKM’13, CIKM, pp. 179–188 (2013) Zhan et al. [2019] Zhan, Q., Zhang, J., Yu, P.S.: Integrated anchor and social link predictions across multiple social networks. Knowl. Inf. Syst. 60(1), 303–326 (2019) Zhang and Tong [2016] Zhang, S., Tong, H.: FINAL: fast attributed network alignment. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD, pp. 1345–1354 (2016) Bayati et al. [2009] Bayati, M., Gerritsen, M., Gleich, D.F., Saberi, A., Wang, Y.: Algorithms for large, sparse network alignment problems. In: Proceedings of the Ninth IEEE International Conference on Data Mining, ICDM, pp. 705–710 (2009) Wang et al. [2020] Wang, F., Sun, L., Zhang, Z.: Hyperbolic user identity linkage across social networks. In: Proceedings of the Global Communications Conference, GLOBECOM 2020, IEEE, pp. 1–6 (2020) Sun et al. [2020] Sun, L., Zhang, Z., Zhang, J., Wang, F., Du, Y., Su, S., Yu, P.S.: Perfect: A hyperbolic embedding for joint user and community alignment. In: Proceedings of the 20th IEEE International Conference on Data Mining, ICDM, pp. 501–510 (2020) Sun et al. [2022] Sun, L., Ye, J., Peng, H., Yu, P.S.: A self-supervised riemannian GNN with time varying curvature for temporal graph learning. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pp. 1827–1836 (2022) Bai et al. [2023] Bai, Q., Nie, C., Zhang, H., Zhao, D., Yuan, X.: Hgwavenet: A hyperbolic graph neural network for temporal link prediction. In: Proceedings of the ACM Web Conference 2023, WWW, pp. 523–532 (2023) Petersen [2006] Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Chen, H., Yin, H., Sun, X., Chen, T., Gabrys, B., Musial, K.: Multi-level graph convolutional networks for cross-platform anchor link prediction. In: Proceedings of the 26th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 1503–1511 (2020) Mu et al. [2016] Mu, X., Zhu, F., Lim, E., Xiao, J., Wang, J., Zhou, Z.: User identity linkage by latent user space modelling. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD, pp. 1775–1784 (2016) Kong et al. [2013] Kong, X., Zhang, J., Yu, P.S.: Inferring anchor links across multiple heterogeneous social networks. In: Proceedings of the 22nd ACM International Conference on Information and Knowledge Management, CIKM’13, CIKM, pp. 179–188 (2013) Zhan et al. [2019] Zhan, Q., Zhang, J., Yu, P.S.: Integrated anchor and social link predictions across multiple social networks. Knowl. Inf. Syst. 60(1), 303–326 (2019) Zhang and Tong [2016] Zhang, S., Tong, H.: FINAL: fast attributed network alignment. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD, pp. 1345–1354 (2016) Bayati et al. [2009] Bayati, M., Gerritsen, M., Gleich, D.F., Saberi, A., Wang, Y.: Algorithms for large, sparse network alignment problems. In: Proceedings of the Ninth IEEE International Conference on Data Mining, ICDM, pp. 705–710 (2009) Wang et al. [2020] Wang, F., Sun, L., Zhang, Z.: Hyperbolic user identity linkage across social networks. In: Proceedings of the Global Communications Conference, GLOBECOM 2020, IEEE, pp. 1–6 (2020) Sun et al. [2020] Sun, L., Zhang, Z., Zhang, J., Wang, F., Du, Y., Su, S., Yu, P.S.: Perfect: A hyperbolic embedding for joint user and community alignment. In: Proceedings of the 20th IEEE International Conference on Data Mining, ICDM, pp. 501–510 (2020) Sun et al. [2022] Sun, L., Ye, J., Peng, H., Yu, P.S.: A self-supervised riemannian GNN with time varying curvature for temporal graph learning. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pp. 1827–1836 (2022) Bai et al. [2023] Bai, Q., Nie, C., Zhang, H., Zhao, D., Yuan, X.: Hgwavenet: A hyperbolic graph neural network for temporal link prediction. In: Proceedings of the ACM Web Conference 2023, WWW, pp. 523–532 (2023) Petersen [2006] Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Mu, X., Zhu, F., Lim, E., Xiao, J., Wang, J., Zhou, Z.: User identity linkage by latent user space modelling. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD, pp. 1775–1784 (2016) Kong et al. [2013] Kong, X., Zhang, J., Yu, P.S.: Inferring anchor links across multiple heterogeneous social networks. In: Proceedings of the 22nd ACM International Conference on Information and Knowledge Management, CIKM’13, CIKM, pp. 179–188 (2013) Zhan et al. [2019] Zhan, Q., Zhang, J., Yu, P.S.: Integrated anchor and social link predictions across multiple social networks. Knowl. Inf. Syst. 60(1), 303–326 (2019) Zhang and Tong [2016] Zhang, S., Tong, H.: FINAL: fast attributed network alignment. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD, pp. 1345–1354 (2016) Bayati et al. [2009] Bayati, M., Gerritsen, M., Gleich, D.F., Saberi, A., Wang, Y.: Algorithms for large, sparse network alignment problems. In: Proceedings of the Ninth IEEE International Conference on Data Mining, ICDM, pp. 705–710 (2009) Wang et al. [2020] Wang, F., Sun, L., Zhang, Z.: Hyperbolic user identity linkage across social networks. In: Proceedings of the Global Communications Conference, GLOBECOM 2020, IEEE, pp. 1–6 (2020) Sun et al. [2020] Sun, L., Zhang, Z., Zhang, J., Wang, F., Du, Y., Su, S., Yu, P.S.: Perfect: A hyperbolic embedding for joint user and community alignment. In: Proceedings of the 20th IEEE International Conference on Data Mining, ICDM, pp. 501–510 (2020) Sun et al. [2022] Sun, L., Ye, J., Peng, H., Yu, P.S.: A self-supervised riemannian GNN with time varying curvature for temporal graph learning. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pp. 1827–1836 (2022) Bai et al. [2023] Bai, Q., Nie, C., Zhang, H., Zhao, D., Yuan, X.: Hgwavenet: A hyperbolic graph neural network for temporal link prediction. In: Proceedings of the ACM Web Conference 2023, WWW, pp. 523–532 (2023) Petersen [2006] Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Kong, X., Zhang, J., Yu, P.S.: Inferring anchor links across multiple heterogeneous social networks. In: Proceedings of the 22nd ACM International Conference on Information and Knowledge Management, CIKM’13, CIKM, pp. 179–188 (2013) Zhan et al. [2019] Zhan, Q., Zhang, J., Yu, P.S.: Integrated anchor and social link predictions across multiple social networks. Knowl. Inf. Syst. 60(1), 303–326 (2019) Zhang and Tong [2016] Zhang, S., Tong, H.: FINAL: fast attributed network alignment. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD, pp. 1345–1354 (2016) Bayati et al. [2009] Bayati, M., Gerritsen, M., Gleich, D.F., Saberi, A., Wang, Y.: Algorithms for large, sparse network alignment problems. In: Proceedings of the Ninth IEEE International Conference on Data Mining, ICDM, pp. 705–710 (2009) Wang et al. [2020] Wang, F., Sun, L., Zhang, Z.: Hyperbolic user identity linkage across social networks. In: Proceedings of the Global Communications Conference, GLOBECOM 2020, IEEE, pp. 1–6 (2020) Sun et al. [2020] Sun, L., Zhang, Z., Zhang, J., Wang, F., Du, Y., Su, S., Yu, P.S.: Perfect: A hyperbolic embedding for joint user and community alignment. In: Proceedings of the 20th IEEE International Conference on Data Mining, ICDM, pp. 501–510 (2020) Sun et al. [2022] Sun, L., Ye, J., Peng, H., Yu, P.S.: A self-supervised riemannian GNN with time varying curvature for temporal graph learning. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pp. 1827–1836 (2022) Bai et al. [2023] Bai, Q., Nie, C., Zhang, H., Zhao, D., Yuan, X.: Hgwavenet: A hyperbolic graph neural network for temporal link prediction. In: Proceedings of the ACM Web Conference 2023, WWW, pp. 523–532 (2023) Petersen [2006] Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhan, Q., Zhang, J., Yu, P.S.: Integrated anchor and social link predictions across multiple social networks. Knowl. Inf. Syst. 60(1), 303–326 (2019) Zhang and Tong [2016] Zhang, S., Tong, H.: FINAL: fast attributed network alignment. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD, pp. 1345–1354 (2016) Bayati et al. [2009] Bayati, M., Gerritsen, M., Gleich, D.F., Saberi, A., Wang, Y.: Algorithms for large, sparse network alignment problems. In: Proceedings of the Ninth IEEE International Conference on Data Mining, ICDM, pp. 705–710 (2009) Wang et al. [2020] Wang, F., Sun, L., Zhang, Z.: Hyperbolic user identity linkage across social networks. In: Proceedings of the Global Communications Conference, GLOBECOM 2020, IEEE, pp. 1–6 (2020) Sun et al. [2020] Sun, L., Zhang, Z., Zhang, J., Wang, F., Du, Y., Su, S., Yu, P.S.: Perfect: A hyperbolic embedding for joint user and community alignment. In: Proceedings of the 20th IEEE International Conference on Data Mining, ICDM, pp. 501–510 (2020) Sun et al. [2022] Sun, L., Ye, J., Peng, H., Yu, P.S.: A self-supervised riemannian GNN with time varying curvature for temporal graph learning. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pp. 1827–1836 (2022) Bai et al. [2023] Bai, Q., Nie, C., Zhang, H., Zhao, D., Yuan, X.: Hgwavenet: A hyperbolic graph neural network for temporal link prediction. In: Proceedings of the ACM Web Conference 2023, WWW, pp. 523–532 (2023) Petersen [2006] Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhang, S., Tong, H.: FINAL: fast attributed network alignment. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD, pp. 1345–1354 (2016) Bayati et al. [2009] Bayati, M., Gerritsen, M., Gleich, D.F., Saberi, A., Wang, Y.: Algorithms for large, sparse network alignment problems. In: Proceedings of the Ninth IEEE International Conference on Data Mining, ICDM, pp. 705–710 (2009) Wang et al. [2020] Wang, F., Sun, L., Zhang, Z.: Hyperbolic user identity linkage across social networks. In: Proceedings of the Global Communications Conference, GLOBECOM 2020, IEEE, pp. 1–6 (2020) Sun et al. [2020] Sun, L., Zhang, Z., Zhang, J., Wang, F., Du, Y., Su, S., Yu, P.S.: Perfect: A hyperbolic embedding for joint user and community alignment. In: Proceedings of the 20th IEEE International Conference on Data Mining, ICDM, pp. 501–510 (2020) Sun et al. [2022] Sun, L., Ye, J., Peng, H., Yu, P.S.: A self-supervised riemannian GNN with time varying curvature for temporal graph learning. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pp. 1827–1836 (2022) Bai et al. [2023] Bai, Q., Nie, C., Zhang, H., Zhao, D., Yuan, X.: Hgwavenet: A hyperbolic graph neural network for temporal link prediction. In: Proceedings of the ACM Web Conference 2023, WWW, pp. 523–532 (2023) Petersen [2006] Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Bayati, M., Gerritsen, M., Gleich, D.F., Saberi, A., Wang, Y.: Algorithms for large, sparse network alignment problems. In: Proceedings of the Ninth IEEE International Conference on Data Mining, ICDM, pp. 705–710 (2009) Wang et al. [2020] Wang, F., Sun, L., Zhang, Z.: Hyperbolic user identity linkage across social networks. In: Proceedings of the Global Communications Conference, GLOBECOM 2020, IEEE, pp. 1–6 (2020) Sun et al. [2020] Sun, L., Zhang, Z., Zhang, J., Wang, F., Du, Y., Su, S., Yu, P.S.: Perfect: A hyperbolic embedding for joint user and community alignment. In: Proceedings of the 20th IEEE International Conference on Data Mining, ICDM, pp. 501–510 (2020) Sun et al. [2022] Sun, L., Ye, J., Peng, H., Yu, P.S.: A self-supervised riemannian GNN with time varying curvature for temporal graph learning. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pp. 1827–1836 (2022) Bai et al. [2023] Bai, Q., Nie, C., Zhang, H., Zhao, D., Yuan, X.: Hgwavenet: A hyperbolic graph neural network for temporal link prediction. In: Proceedings of the ACM Web Conference 2023, WWW, pp. 523–532 (2023) Petersen [2006] Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Wang, F., Sun, L., Zhang, Z.: Hyperbolic user identity linkage across social networks. In: Proceedings of the Global Communications Conference, GLOBECOM 2020, IEEE, pp. 1–6 (2020) Sun et al. [2020] Sun, L., Zhang, Z., Zhang, J., Wang, F., Du, Y., Su, S., Yu, P.S.: Perfect: A hyperbolic embedding for joint user and community alignment. In: Proceedings of the 20th IEEE International Conference on Data Mining, ICDM, pp. 501–510 (2020) Sun et al. [2022] Sun, L., Ye, J., Peng, H., Yu, P.S.: A self-supervised riemannian GNN with time varying curvature for temporal graph learning. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pp. 1827–1836 (2022) Bai et al. [2023] Bai, Q., Nie, C., Zhang, H., Zhao, D., Yuan, X.: Hgwavenet: A hyperbolic graph neural network for temporal link prediction. In: Proceedings of the ACM Web Conference 2023, WWW, pp. 523–532 (2023) Petersen [2006] Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Zhang, J., Wang, F., Du, Y., Su, S., Yu, P.S.: Perfect: A hyperbolic embedding for joint user and community alignment. In: Proceedings of the 20th IEEE International Conference on Data Mining, ICDM, pp. 501–510 (2020) Sun et al. [2022] Sun, L., Ye, J., Peng, H., Yu, P.S.: A self-supervised riemannian GNN with time varying curvature for temporal graph learning. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pp. 1827–1836 (2022) Bai et al. [2023] Bai, Q., Nie, C., Zhang, H., Zhao, D., Yuan, X.: Hgwavenet: A hyperbolic graph neural network for temporal link prediction. In: Proceedings of the ACM Web Conference 2023, WWW, pp. 523–532 (2023) Petersen [2006] Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Ye, J., Peng, H., Yu, P.S.: A self-supervised riemannian GNN with time varying curvature for temporal graph learning. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pp. 1827–1836 (2022) Bai et al. [2023] Bai, Q., Nie, C., Zhang, H., Zhao, D., Yuan, X.: Hgwavenet: A hyperbolic graph neural network for temporal link prediction. In: Proceedings of the ACM Web Conference 2023, WWW, pp. 523–532 (2023) Petersen [2006] Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Bai, Q., Nie, C., Zhang, H., Zhao, D., Yuan, X.: Hgwavenet: A hyperbolic graph neural network for temporal link prediction. In: Proceedings of the ACM Web Conference 2023, WWW, pp. 523–532 (2023) Petersen [2006] Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022)
- Chen, H., Li, Y., Shi, S., Liu, S., Zhu, H., Zhang, Y.: Graph collaborative reasoning. CoRR abs/2112.13705 (2021) Chen et al. [2020] Chen, H., Yin, H., Sun, X., Chen, T., Gabrys, B., Musial, K.: Multi-level graph convolutional networks for cross-platform anchor link prediction. In: Proceedings of the 26th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 1503–1511 (2020) Mu et al. [2016] Mu, X., Zhu, F., Lim, E., Xiao, J., Wang, J., Zhou, Z.: User identity linkage by latent user space modelling. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD, pp. 1775–1784 (2016) Kong et al. [2013] Kong, X., Zhang, J., Yu, P.S.: Inferring anchor links across multiple heterogeneous social networks. In: Proceedings of the 22nd ACM International Conference on Information and Knowledge Management, CIKM’13, CIKM, pp. 179–188 (2013) Zhan et al. [2019] Zhan, Q., Zhang, J., Yu, P.S.: Integrated anchor and social link predictions across multiple social networks. Knowl. Inf. Syst. 60(1), 303–326 (2019) Zhang and Tong [2016] Zhang, S., Tong, H.: FINAL: fast attributed network alignment. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD, pp. 1345–1354 (2016) Bayati et al. [2009] Bayati, M., Gerritsen, M., Gleich, D.F., Saberi, A., Wang, Y.: Algorithms for large, sparse network alignment problems. In: Proceedings of the Ninth IEEE International Conference on Data Mining, ICDM, pp. 705–710 (2009) Wang et al. [2020] Wang, F., Sun, L., Zhang, Z.: Hyperbolic user identity linkage across social networks. In: Proceedings of the Global Communications Conference, GLOBECOM 2020, IEEE, pp. 1–6 (2020) Sun et al. [2020] Sun, L., Zhang, Z., Zhang, J., Wang, F., Du, Y., Su, S., Yu, P.S.: Perfect: A hyperbolic embedding for joint user and community alignment. In: Proceedings of the 20th IEEE International Conference on Data Mining, ICDM, pp. 501–510 (2020) Sun et al. [2022] Sun, L., Ye, J., Peng, H., Yu, P.S.: A self-supervised riemannian GNN with time varying curvature for temporal graph learning. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pp. 1827–1836 (2022) Bai et al. [2023] Bai, Q., Nie, C., Zhang, H., Zhao, D., Yuan, X.: Hgwavenet: A hyperbolic graph neural network for temporal link prediction. In: Proceedings of the ACM Web Conference 2023, WWW, pp. 523–532 (2023) Petersen [2006] Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Chen, H., Yin, H., Sun, X., Chen, T., Gabrys, B., Musial, K.: Multi-level graph convolutional networks for cross-platform anchor link prediction. In: Proceedings of the 26th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 1503–1511 (2020) Mu et al. [2016] Mu, X., Zhu, F., Lim, E., Xiao, J., Wang, J., Zhou, Z.: User identity linkage by latent user space modelling. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD, pp. 1775–1784 (2016) Kong et al. [2013] Kong, X., Zhang, J., Yu, P.S.: Inferring anchor links across multiple heterogeneous social networks. In: Proceedings of the 22nd ACM International Conference on Information and Knowledge Management, CIKM’13, CIKM, pp. 179–188 (2013) Zhan et al. [2019] Zhan, Q., Zhang, J., Yu, P.S.: Integrated anchor and social link predictions across multiple social networks. Knowl. Inf. Syst. 60(1), 303–326 (2019) Zhang and Tong [2016] Zhang, S., Tong, H.: FINAL: fast attributed network alignment. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD, pp. 1345–1354 (2016) Bayati et al. [2009] Bayati, M., Gerritsen, M., Gleich, D.F., Saberi, A., Wang, Y.: Algorithms for large, sparse network alignment problems. In: Proceedings of the Ninth IEEE International Conference on Data Mining, ICDM, pp. 705–710 (2009) Wang et al. [2020] Wang, F., Sun, L., Zhang, Z.: Hyperbolic user identity linkage across social networks. In: Proceedings of the Global Communications Conference, GLOBECOM 2020, IEEE, pp. 1–6 (2020) Sun et al. [2020] Sun, L., Zhang, Z., Zhang, J., Wang, F., Du, Y., Su, S., Yu, P.S.: Perfect: A hyperbolic embedding for joint user and community alignment. In: Proceedings of the 20th IEEE International Conference on Data Mining, ICDM, pp. 501–510 (2020) Sun et al. [2022] Sun, L., Ye, J., Peng, H., Yu, P.S.: A self-supervised riemannian GNN with time varying curvature for temporal graph learning. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pp. 1827–1836 (2022) Bai et al. [2023] Bai, Q., Nie, C., Zhang, H., Zhao, D., Yuan, X.: Hgwavenet: A hyperbolic graph neural network for temporal link prediction. In: Proceedings of the ACM Web Conference 2023, WWW, pp. 523–532 (2023) Petersen [2006] Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Mu, X., Zhu, F., Lim, E., Xiao, J., Wang, J., Zhou, Z.: User identity linkage by latent user space modelling. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD, pp. 1775–1784 (2016) Kong et al. [2013] Kong, X., Zhang, J., Yu, P.S.: Inferring anchor links across multiple heterogeneous social networks. In: Proceedings of the 22nd ACM International Conference on Information and Knowledge Management, CIKM’13, CIKM, pp. 179–188 (2013) Zhan et al. [2019] Zhan, Q., Zhang, J., Yu, P.S.: Integrated anchor and social link predictions across multiple social networks. Knowl. Inf. Syst. 60(1), 303–326 (2019) Zhang and Tong [2016] Zhang, S., Tong, H.: FINAL: fast attributed network alignment. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD, pp. 1345–1354 (2016) Bayati et al. [2009] Bayati, M., Gerritsen, M., Gleich, D.F., Saberi, A., Wang, Y.: Algorithms for large, sparse network alignment problems. In: Proceedings of the Ninth IEEE International Conference on Data Mining, ICDM, pp. 705–710 (2009) Wang et al. [2020] Wang, F., Sun, L., Zhang, Z.: Hyperbolic user identity linkage across social networks. In: Proceedings of the Global Communications Conference, GLOBECOM 2020, IEEE, pp. 1–6 (2020) Sun et al. [2020] Sun, L., Zhang, Z., Zhang, J., Wang, F., Du, Y., Su, S., Yu, P.S.: Perfect: A hyperbolic embedding for joint user and community alignment. In: Proceedings of the 20th IEEE International Conference on Data Mining, ICDM, pp. 501–510 (2020) Sun et al. [2022] Sun, L., Ye, J., Peng, H., Yu, P.S.: A self-supervised riemannian GNN with time varying curvature for temporal graph learning. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pp. 1827–1836 (2022) Bai et al. [2023] Bai, Q., Nie, C., Zhang, H., Zhao, D., Yuan, X.: Hgwavenet: A hyperbolic graph neural network for temporal link prediction. In: Proceedings of the ACM Web Conference 2023, WWW, pp. 523–532 (2023) Petersen [2006] Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Kong, X., Zhang, J., Yu, P.S.: Inferring anchor links across multiple heterogeneous social networks. In: Proceedings of the 22nd ACM International Conference on Information and Knowledge Management, CIKM’13, CIKM, pp. 179–188 (2013) Zhan et al. [2019] Zhan, Q., Zhang, J., Yu, P.S.: Integrated anchor and social link predictions across multiple social networks. Knowl. Inf. Syst. 60(1), 303–326 (2019) Zhang and Tong [2016] Zhang, S., Tong, H.: FINAL: fast attributed network alignment. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD, pp. 1345–1354 (2016) Bayati et al. [2009] Bayati, M., Gerritsen, M., Gleich, D.F., Saberi, A., Wang, Y.: Algorithms for large, sparse network alignment problems. In: Proceedings of the Ninth IEEE International Conference on Data Mining, ICDM, pp. 705–710 (2009) Wang et al. [2020] Wang, F., Sun, L., Zhang, Z.: Hyperbolic user identity linkage across social networks. In: Proceedings of the Global Communications Conference, GLOBECOM 2020, IEEE, pp. 1–6 (2020) Sun et al. [2020] Sun, L., Zhang, Z., Zhang, J., Wang, F., Du, Y., Su, S., Yu, P.S.: Perfect: A hyperbolic embedding for joint user and community alignment. In: Proceedings of the 20th IEEE International Conference on Data Mining, ICDM, pp. 501–510 (2020) Sun et al. [2022] Sun, L., Ye, J., Peng, H., Yu, P.S.: A self-supervised riemannian GNN with time varying curvature for temporal graph learning. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pp. 1827–1836 (2022) Bai et al. [2023] Bai, Q., Nie, C., Zhang, H., Zhao, D., Yuan, X.: Hgwavenet: A hyperbolic graph neural network for temporal link prediction. In: Proceedings of the ACM Web Conference 2023, WWW, pp. 523–532 (2023) Petersen [2006] Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhan, Q., Zhang, J., Yu, P.S.: Integrated anchor and social link predictions across multiple social networks. Knowl. Inf. Syst. 60(1), 303–326 (2019) Zhang and Tong [2016] Zhang, S., Tong, H.: FINAL: fast attributed network alignment. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD, pp. 1345–1354 (2016) Bayati et al. [2009] Bayati, M., Gerritsen, M., Gleich, D.F., Saberi, A., Wang, Y.: Algorithms for large, sparse network alignment problems. In: Proceedings of the Ninth IEEE International Conference on Data Mining, ICDM, pp. 705–710 (2009) Wang et al. [2020] Wang, F., Sun, L., Zhang, Z.: Hyperbolic user identity linkage across social networks. In: Proceedings of the Global Communications Conference, GLOBECOM 2020, IEEE, pp. 1–6 (2020) Sun et al. [2020] Sun, L., Zhang, Z., Zhang, J., Wang, F., Du, Y., Su, S., Yu, P.S.: Perfect: A hyperbolic embedding for joint user and community alignment. In: Proceedings of the 20th IEEE International Conference on Data Mining, ICDM, pp. 501–510 (2020) Sun et al. [2022] Sun, L., Ye, J., Peng, H., Yu, P.S.: A self-supervised riemannian GNN with time varying curvature for temporal graph learning. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pp. 1827–1836 (2022) Bai et al. [2023] Bai, Q., Nie, C., Zhang, H., Zhao, D., Yuan, X.: Hgwavenet: A hyperbolic graph neural network for temporal link prediction. In: Proceedings of the ACM Web Conference 2023, WWW, pp. 523–532 (2023) Petersen [2006] Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhang, S., Tong, H.: FINAL: fast attributed network alignment. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD, pp. 1345–1354 (2016) Bayati et al. [2009] Bayati, M., Gerritsen, M., Gleich, D.F., Saberi, A., Wang, Y.: Algorithms for large, sparse network alignment problems. In: Proceedings of the Ninth IEEE International Conference on Data Mining, ICDM, pp. 705–710 (2009) Wang et al. [2020] Wang, F., Sun, L., Zhang, Z.: Hyperbolic user identity linkage across social networks. In: Proceedings of the Global Communications Conference, GLOBECOM 2020, IEEE, pp. 1–6 (2020) Sun et al. [2020] Sun, L., Zhang, Z., Zhang, J., Wang, F., Du, Y., Su, S., Yu, P.S.: Perfect: A hyperbolic embedding for joint user and community alignment. In: Proceedings of the 20th IEEE International Conference on Data Mining, ICDM, pp. 501–510 (2020) Sun et al. [2022] Sun, L., Ye, J., Peng, H., Yu, P.S.: A self-supervised riemannian GNN with time varying curvature for temporal graph learning. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pp. 1827–1836 (2022) Bai et al. [2023] Bai, Q., Nie, C., Zhang, H., Zhao, D., Yuan, X.: Hgwavenet: A hyperbolic graph neural network for temporal link prediction. In: Proceedings of the ACM Web Conference 2023, WWW, pp. 523–532 (2023) Petersen [2006] Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Bayati, M., Gerritsen, M., Gleich, D.F., Saberi, A., Wang, Y.: Algorithms for large, sparse network alignment problems. In: Proceedings of the Ninth IEEE International Conference on Data Mining, ICDM, pp. 705–710 (2009) Wang et al. [2020] Wang, F., Sun, L., Zhang, Z.: Hyperbolic user identity linkage across social networks. In: Proceedings of the Global Communications Conference, GLOBECOM 2020, IEEE, pp. 1–6 (2020) Sun et al. [2020] Sun, L., Zhang, Z., Zhang, J., Wang, F., Du, Y., Su, S., Yu, P.S.: Perfect: A hyperbolic embedding for joint user and community alignment. In: Proceedings of the 20th IEEE International Conference on Data Mining, ICDM, pp. 501–510 (2020) Sun et al. [2022] Sun, L., Ye, J., Peng, H., Yu, P.S.: A self-supervised riemannian GNN with time varying curvature for temporal graph learning. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pp. 1827–1836 (2022) Bai et al. [2023] Bai, Q., Nie, C., Zhang, H., Zhao, D., Yuan, X.: Hgwavenet: A hyperbolic graph neural network for temporal link prediction. In: Proceedings of the ACM Web Conference 2023, WWW, pp. 523–532 (2023) Petersen [2006] Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Wang, F., Sun, L., Zhang, Z.: Hyperbolic user identity linkage across social networks. In: Proceedings of the Global Communications Conference, GLOBECOM 2020, IEEE, pp. 1–6 (2020) Sun et al. [2020] Sun, L., Zhang, Z., Zhang, J., Wang, F., Du, Y., Su, S., Yu, P.S.: Perfect: A hyperbolic embedding for joint user and community alignment. In: Proceedings of the 20th IEEE International Conference on Data Mining, ICDM, pp. 501–510 (2020) Sun et al. [2022] Sun, L., Ye, J., Peng, H., Yu, P.S.: A self-supervised riemannian GNN with time varying curvature for temporal graph learning. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pp. 1827–1836 (2022) Bai et al. [2023] Bai, Q., Nie, C., Zhang, H., Zhao, D., Yuan, X.: Hgwavenet: A hyperbolic graph neural network for temporal link prediction. In: Proceedings of the ACM Web Conference 2023, WWW, pp. 523–532 (2023) Petersen [2006] Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Zhang, J., Wang, F., Du, Y., Su, S., Yu, P.S.: Perfect: A hyperbolic embedding for joint user and community alignment. In: Proceedings of the 20th IEEE International Conference on Data Mining, ICDM, pp. 501–510 (2020) Sun et al. [2022] Sun, L., Ye, J., Peng, H., Yu, P.S.: A self-supervised riemannian GNN with time varying curvature for temporal graph learning. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pp. 1827–1836 (2022) Bai et al. [2023] Bai, Q., Nie, C., Zhang, H., Zhao, D., Yuan, X.: Hgwavenet: A hyperbolic graph neural network for temporal link prediction. In: Proceedings of the ACM Web Conference 2023, WWW, pp. 523–532 (2023) Petersen [2006] Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Ye, J., Peng, H., Yu, P.S.: A self-supervised riemannian GNN with time varying curvature for temporal graph learning. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pp. 1827–1836 (2022) Bai et al. [2023] Bai, Q., Nie, C., Zhang, H., Zhao, D., Yuan, X.: Hgwavenet: A hyperbolic graph neural network for temporal link prediction. In: Proceedings of the ACM Web Conference 2023, WWW, pp. 523–532 (2023) Petersen [2006] Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Bai, Q., Nie, C., Zhang, H., Zhao, D., Yuan, X.: Hgwavenet: A hyperbolic graph neural network for temporal link prediction. In: Proceedings of the ACM Web Conference 2023, WWW, pp. 523–532 (2023) Petersen [2006] Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022)
- Chen, H., Yin, H., Sun, X., Chen, T., Gabrys, B., Musial, K.: Multi-level graph convolutional networks for cross-platform anchor link prediction. In: Proceedings of the 26th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 1503–1511 (2020) Mu et al. [2016] Mu, X., Zhu, F., Lim, E., Xiao, J., Wang, J., Zhou, Z.: User identity linkage by latent user space modelling. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD, pp. 1775–1784 (2016) Kong et al. [2013] Kong, X., Zhang, J., Yu, P.S.: Inferring anchor links across multiple heterogeneous social networks. In: Proceedings of the 22nd ACM International Conference on Information and Knowledge Management, CIKM’13, CIKM, pp. 179–188 (2013) Zhan et al. [2019] Zhan, Q., Zhang, J., Yu, P.S.: Integrated anchor and social link predictions across multiple social networks. Knowl. Inf. Syst. 60(1), 303–326 (2019) Zhang and Tong [2016] Zhang, S., Tong, H.: FINAL: fast attributed network alignment. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD, pp. 1345–1354 (2016) Bayati et al. [2009] Bayati, M., Gerritsen, M., Gleich, D.F., Saberi, A., Wang, Y.: Algorithms for large, sparse network alignment problems. In: Proceedings of the Ninth IEEE International Conference on Data Mining, ICDM, pp. 705–710 (2009) Wang et al. [2020] Wang, F., Sun, L., Zhang, Z.: Hyperbolic user identity linkage across social networks. In: Proceedings of the Global Communications Conference, GLOBECOM 2020, IEEE, pp. 1–6 (2020) Sun et al. [2020] Sun, L., Zhang, Z., Zhang, J., Wang, F., Du, Y., Su, S., Yu, P.S.: Perfect: A hyperbolic embedding for joint user and community alignment. In: Proceedings of the 20th IEEE International Conference on Data Mining, ICDM, pp. 501–510 (2020) Sun et al. [2022] Sun, L., Ye, J., Peng, H., Yu, P.S.: A self-supervised riemannian GNN with time varying curvature for temporal graph learning. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pp. 1827–1836 (2022) Bai et al. [2023] Bai, Q., Nie, C., Zhang, H., Zhao, D., Yuan, X.: Hgwavenet: A hyperbolic graph neural network for temporal link prediction. In: Proceedings of the ACM Web Conference 2023, WWW, pp. 523–532 (2023) Petersen [2006] Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Mu, X., Zhu, F., Lim, E., Xiao, J., Wang, J., Zhou, Z.: User identity linkage by latent user space modelling. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD, pp. 1775–1784 (2016) Kong et al. [2013] Kong, X., Zhang, J., Yu, P.S.: Inferring anchor links across multiple heterogeneous social networks. In: Proceedings of the 22nd ACM International Conference on Information and Knowledge Management, CIKM’13, CIKM, pp. 179–188 (2013) Zhan et al. [2019] Zhan, Q., Zhang, J., Yu, P.S.: Integrated anchor and social link predictions across multiple social networks. Knowl. Inf. Syst. 60(1), 303–326 (2019) Zhang and Tong [2016] Zhang, S., Tong, H.: FINAL: fast attributed network alignment. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD, pp. 1345–1354 (2016) Bayati et al. [2009] Bayati, M., Gerritsen, M., Gleich, D.F., Saberi, A., Wang, Y.: Algorithms for large, sparse network alignment problems. In: Proceedings of the Ninth IEEE International Conference on Data Mining, ICDM, pp. 705–710 (2009) Wang et al. [2020] Wang, F., Sun, L., Zhang, Z.: Hyperbolic user identity linkage across social networks. In: Proceedings of the Global Communications Conference, GLOBECOM 2020, IEEE, pp. 1–6 (2020) Sun et al. [2020] Sun, L., Zhang, Z., Zhang, J., Wang, F., Du, Y., Su, S., Yu, P.S.: Perfect: A hyperbolic embedding for joint user and community alignment. In: Proceedings of the 20th IEEE International Conference on Data Mining, ICDM, pp. 501–510 (2020) Sun et al. [2022] Sun, L., Ye, J., Peng, H., Yu, P.S.: A self-supervised riemannian GNN with time varying curvature for temporal graph learning. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pp. 1827–1836 (2022) Bai et al. [2023] Bai, Q., Nie, C., Zhang, H., Zhao, D., Yuan, X.: Hgwavenet: A hyperbolic graph neural network for temporal link prediction. In: Proceedings of the ACM Web Conference 2023, WWW, pp. 523–532 (2023) Petersen [2006] Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Kong, X., Zhang, J., Yu, P.S.: Inferring anchor links across multiple heterogeneous social networks. In: Proceedings of the 22nd ACM International Conference on Information and Knowledge Management, CIKM’13, CIKM, pp. 179–188 (2013) Zhan et al. [2019] Zhan, Q., Zhang, J., Yu, P.S.: Integrated anchor and social link predictions across multiple social networks. Knowl. Inf. Syst. 60(1), 303–326 (2019) Zhang and Tong [2016] Zhang, S., Tong, H.: FINAL: fast attributed network alignment. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD, pp. 1345–1354 (2016) Bayati et al. [2009] Bayati, M., Gerritsen, M., Gleich, D.F., Saberi, A., Wang, Y.: Algorithms for large, sparse network alignment problems. In: Proceedings of the Ninth IEEE International Conference on Data Mining, ICDM, pp. 705–710 (2009) Wang et al. [2020] Wang, F., Sun, L., Zhang, Z.: Hyperbolic user identity linkage across social networks. In: Proceedings of the Global Communications Conference, GLOBECOM 2020, IEEE, pp. 1–6 (2020) Sun et al. [2020] Sun, L., Zhang, Z., Zhang, J., Wang, F., Du, Y., Su, S., Yu, P.S.: Perfect: A hyperbolic embedding for joint user and community alignment. In: Proceedings of the 20th IEEE International Conference on Data Mining, ICDM, pp. 501–510 (2020) Sun et al. [2022] Sun, L., Ye, J., Peng, H., Yu, P.S.: A self-supervised riemannian GNN with time varying curvature for temporal graph learning. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pp. 1827–1836 (2022) Bai et al. [2023] Bai, Q., Nie, C., Zhang, H., Zhao, D., Yuan, X.: Hgwavenet: A hyperbolic graph neural network for temporal link prediction. In: Proceedings of the ACM Web Conference 2023, WWW, pp. 523–532 (2023) Petersen [2006] Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhan, Q., Zhang, J., Yu, P.S.: Integrated anchor and social link predictions across multiple social networks. Knowl. Inf. Syst. 60(1), 303–326 (2019) Zhang and Tong [2016] Zhang, S., Tong, H.: FINAL: fast attributed network alignment. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD, pp. 1345–1354 (2016) Bayati et al. [2009] Bayati, M., Gerritsen, M., Gleich, D.F., Saberi, A., Wang, Y.: Algorithms for large, sparse network alignment problems. In: Proceedings of the Ninth IEEE International Conference on Data Mining, ICDM, pp. 705–710 (2009) Wang et al. [2020] Wang, F., Sun, L., Zhang, Z.: Hyperbolic user identity linkage across social networks. In: Proceedings of the Global Communications Conference, GLOBECOM 2020, IEEE, pp. 1–6 (2020) Sun et al. [2020] Sun, L., Zhang, Z., Zhang, J., Wang, F., Du, Y., Su, S., Yu, P.S.: Perfect: A hyperbolic embedding for joint user and community alignment. In: Proceedings of the 20th IEEE International Conference on Data Mining, ICDM, pp. 501–510 (2020) Sun et al. [2022] Sun, L., Ye, J., Peng, H., Yu, P.S.: A self-supervised riemannian GNN with time varying curvature for temporal graph learning. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pp. 1827–1836 (2022) Bai et al. [2023] Bai, Q., Nie, C., Zhang, H., Zhao, D., Yuan, X.: Hgwavenet: A hyperbolic graph neural network for temporal link prediction. In: Proceedings of the ACM Web Conference 2023, WWW, pp. 523–532 (2023) Petersen [2006] Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhang, S., Tong, H.: FINAL: fast attributed network alignment. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD, pp. 1345–1354 (2016) Bayati et al. [2009] Bayati, M., Gerritsen, M., Gleich, D.F., Saberi, A., Wang, Y.: Algorithms for large, sparse network alignment problems. In: Proceedings of the Ninth IEEE International Conference on Data Mining, ICDM, pp. 705–710 (2009) Wang et al. [2020] Wang, F., Sun, L., Zhang, Z.: Hyperbolic user identity linkage across social networks. In: Proceedings of the Global Communications Conference, GLOBECOM 2020, IEEE, pp. 1–6 (2020) Sun et al. [2020] Sun, L., Zhang, Z., Zhang, J., Wang, F., Du, Y., Su, S., Yu, P.S.: Perfect: A hyperbolic embedding for joint user and community alignment. In: Proceedings of the 20th IEEE International Conference on Data Mining, ICDM, pp. 501–510 (2020) Sun et al. [2022] Sun, L., Ye, J., Peng, H., Yu, P.S.: A self-supervised riemannian GNN with time varying curvature for temporal graph learning. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pp. 1827–1836 (2022) Bai et al. [2023] Bai, Q., Nie, C., Zhang, H., Zhao, D., Yuan, X.: Hgwavenet: A hyperbolic graph neural network for temporal link prediction. In: Proceedings of the ACM Web Conference 2023, WWW, pp. 523–532 (2023) Petersen [2006] Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Bayati, M., Gerritsen, M., Gleich, D.F., Saberi, A., Wang, Y.: Algorithms for large, sparse network alignment problems. In: Proceedings of the Ninth IEEE International Conference on Data Mining, ICDM, pp. 705–710 (2009) Wang et al. [2020] Wang, F., Sun, L., Zhang, Z.: Hyperbolic user identity linkage across social networks. In: Proceedings of the Global Communications Conference, GLOBECOM 2020, IEEE, pp. 1–6 (2020) Sun et al. [2020] Sun, L., Zhang, Z., Zhang, J., Wang, F., Du, Y., Su, S., Yu, P.S.: Perfect: A hyperbolic embedding for joint user and community alignment. In: Proceedings of the 20th IEEE International Conference on Data Mining, ICDM, pp. 501–510 (2020) Sun et al. [2022] Sun, L., Ye, J., Peng, H., Yu, P.S.: A self-supervised riemannian GNN with time varying curvature for temporal graph learning. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pp. 1827–1836 (2022) Bai et al. [2023] Bai, Q., Nie, C., Zhang, H., Zhao, D., Yuan, X.: Hgwavenet: A hyperbolic graph neural network for temporal link prediction. In: Proceedings of the ACM Web Conference 2023, WWW, pp. 523–532 (2023) Petersen [2006] Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Wang, F., Sun, L., Zhang, Z.: Hyperbolic user identity linkage across social networks. In: Proceedings of the Global Communications Conference, GLOBECOM 2020, IEEE, pp. 1–6 (2020) Sun et al. [2020] Sun, L., Zhang, Z., Zhang, J., Wang, F., Du, Y., Su, S., Yu, P.S.: Perfect: A hyperbolic embedding for joint user and community alignment. In: Proceedings of the 20th IEEE International Conference on Data Mining, ICDM, pp. 501–510 (2020) Sun et al. [2022] Sun, L., Ye, J., Peng, H., Yu, P.S.: A self-supervised riemannian GNN with time varying curvature for temporal graph learning. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pp. 1827–1836 (2022) Bai et al. [2023] Bai, Q., Nie, C., Zhang, H., Zhao, D., Yuan, X.: Hgwavenet: A hyperbolic graph neural network for temporal link prediction. In: Proceedings of the ACM Web Conference 2023, WWW, pp. 523–532 (2023) Petersen [2006] Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Zhang, J., Wang, F., Du, Y., Su, S., Yu, P.S.: Perfect: A hyperbolic embedding for joint user and community alignment. In: Proceedings of the 20th IEEE International Conference on Data Mining, ICDM, pp. 501–510 (2020) Sun et al. [2022] Sun, L., Ye, J., Peng, H., Yu, P.S.: A self-supervised riemannian GNN with time varying curvature for temporal graph learning. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pp. 1827–1836 (2022) Bai et al. [2023] Bai, Q., Nie, C., Zhang, H., Zhao, D., Yuan, X.: Hgwavenet: A hyperbolic graph neural network for temporal link prediction. In: Proceedings of the ACM Web Conference 2023, WWW, pp. 523–532 (2023) Petersen [2006] Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Ye, J., Peng, H., Yu, P.S.: A self-supervised riemannian GNN with time varying curvature for temporal graph learning. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pp. 1827–1836 (2022) Bai et al. [2023] Bai, Q., Nie, C., Zhang, H., Zhao, D., Yuan, X.: Hgwavenet: A hyperbolic graph neural network for temporal link prediction. In: Proceedings of the ACM Web Conference 2023, WWW, pp. 523–532 (2023) Petersen [2006] Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Bai, Q., Nie, C., Zhang, H., Zhao, D., Yuan, X.: Hgwavenet: A hyperbolic graph neural network for temporal link prediction. In: Proceedings of the ACM Web Conference 2023, WWW, pp. 523–532 (2023) Petersen [2006] Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022)
- Mu, X., Zhu, F., Lim, E., Xiao, J., Wang, J., Zhou, Z.: User identity linkage by latent user space modelling. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD, pp. 1775–1784 (2016) Kong et al. [2013] Kong, X., Zhang, J., Yu, P.S.: Inferring anchor links across multiple heterogeneous social networks. In: Proceedings of the 22nd ACM International Conference on Information and Knowledge Management, CIKM’13, CIKM, pp. 179–188 (2013) Zhan et al. [2019] Zhan, Q., Zhang, J., Yu, P.S.: Integrated anchor and social link predictions across multiple social networks. Knowl. Inf. Syst. 60(1), 303–326 (2019) Zhang and Tong [2016] Zhang, S., Tong, H.: FINAL: fast attributed network alignment. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD, pp. 1345–1354 (2016) Bayati et al. [2009] Bayati, M., Gerritsen, M., Gleich, D.F., Saberi, A., Wang, Y.: Algorithms for large, sparse network alignment problems. In: Proceedings of the Ninth IEEE International Conference on Data Mining, ICDM, pp. 705–710 (2009) Wang et al. [2020] Wang, F., Sun, L., Zhang, Z.: Hyperbolic user identity linkage across social networks. In: Proceedings of the Global Communications Conference, GLOBECOM 2020, IEEE, pp. 1–6 (2020) Sun et al. [2020] Sun, L., Zhang, Z., Zhang, J., Wang, F., Du, Y., Su, S., Yu, P.S.: Perfect: A hyperbolic embedding for joint user and community alignment. In: Proceedings of the 20th IEEE International Conference on Data Mining, ICDM, pp. 501–510 (2020) Sun et al. [2022] Sun, L., Ye, J., Peng, H., Yu, P.S.: A self-supervised riemannian GNN with time varying curvature for temporal graph learning. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pp. 1827–1836 (2022) Bai et al. [2023] Bai, Q., Nie, C., Zhang, H., Zhao, D., Yuan, X.: Hgwavenet: A hyperbolic graph neural network for temporal link prediction. In: Proceedings of the ACM Web Conference 2023, WWW, pp. 523–532 (2023) Petersen [2006] Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Kong, X., Zhang, J., Yu, P.S.: Inferring anchor links across multiple heterogeneous social networks. In: Proceedings of the 22nd ACM International Conference on Information and Knowledge Management, CIKM’13, CIKM, pp. 179–188 (2013) Zhan et al. [2019] Zhan, Q., Zhang, J., Yu, P.S.: Integrated anchor and social link predictions across multiple social networks. Knowl. Inf. Syst. 60(1), 303–326 (2019) Zhang and Tong [2016] Zhang, S., Tong, H.: FINAL: fast attributed network alignment. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD, pp. 1345–1354 (2016) Bayati et al. [2009] Bayati, M., Gerritsen, M., Gleich, D.F., Saberi, A., Wang, Y.: Algorithms for large, sparse network alignment problems. In: Proceedings of the Ninth IEEE International Conference on Data Mining, ICDM, pp. 705–710 (2009) Wang et al. [2020] Wang, F., Sun, L., Zhang, Z.: Hyperbolic user identity linkage across social networks. In: Proceedings of the Global Communications Conference, GLOBECOM 2020, IEEE, pp. 1–6 (2020) Sun et al. [2020] Sun, L., Zhang, Z., Zhang, J., Wang, F., Du, Y., Su, S., Yu, P.S.: Perfect: A hyperbolic embedding for joint user and community alignment. In: Proceedings of the 20th IEEE International Conference on Data Mining, ICDM, pp. 501–510 (2020) Sun et al. [2022] Sun, L., Ye, J., Peng, H., Yu, P.S.: A self-supervised riemannian GNN with time varying curvature for temporal graph learning. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pp. 1827–1836 (2022) Bai et al. [2023] Bai, Q., Nie, C., Zhang, H., Zhao, D., Yuan, X.: Hgwavenet: A hyperbolic graph neural network for temporal link prediction. In: Proceedings of the ACM Web Conference 2023, WWW, pp. 523–532 (2023) Petersen [2006] Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhan, Q., Zhang, J., Yu, P.S.: Integrated anchor and social link predictions across multiple social networks. Knowl. Inf. Syst. 60(1), 303–326 (2019) Zhang and Tong [2016] Zhang, S., Tong, H.: FINAL: fast attributed network alignment. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD, pp. 1345–1354 (2016) Bayati et al. [2009] Bayati, M., Gerritsen, M., Gleich, D.F., Saberi, A., Wang, Y.: Algorithms for large, sparse network alignment problems. In: Proceedings of the Ninth IEEE International Conference on Data Mining, ICDM, pp. 705–710 (2009) Wang et al. [2020] Wang, F., Sun, L., Zhang, Z.: Hyperbolic user identity linkage across social networks. In: Proceedings of the Global Communications Conference, GLOBECOM 2020, IEEE, pp. 1–6 (2020) Sun et al. [2020] Sun, L., Zhang, Z., Zhang, J., Wang, F., Du, Y., Su, S., Yu, P.S.: Perfect: A hyperbolic embedding for joint user and community alignment. In: Proceedings of the 20th IEEE International Conference on Data Mining, ICDM, pp. 501–510 (2020) Sun et al. [2022] Sun, L., Ye, J., Peng, H., Yu, P.S.: A self-supervised riemannian GNN with time varying curvature for temporal graph learning. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pp. 1827–1836 (2022) Bai et al. [2023] Bai, Q., Nie, C., Zhang, H., Zhao, D., Yuan, X.: Hgwavenet: A hyperbolic graph neural network for temporal link prediction. In: Proceedings of the ACM Web Conference 2023, WWW, pp. 523–532 (2023) Petersen [2006] Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhang, S., Tong, H.: FINAL: fast attributed network alignment. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD, pp. 1345–1354 (2016) Bayati et al. [2009] Bayati, M., Gerritsen, M., Gleich, D.F., Saberi, A., Wang, Y.: Algorithms for large, sparse network alignment problems. In: Proceedings of the Ninth IEEE International Conference on Data Mining, ICDM, pp. 705–710 (2009) Wang et al. [2020] Wang, F., Sun, L., Zhang, Z.: Hyperbolic user identity linkage across social networks. In: Proceedings of the Global Communications Conference, GLOBECOM 2020, IEEE, pp. 1–6 (2020) Sun et al. [2020] Sun, L., Zhang, Z., Zhang, J., Wang, F., Du, Y., Su, S., Yu, P.S.: Perfect: A hyperbolic embedding for joint user and community alignment. In: Proceedings of the 20th IEEE International Conference on Data Mining, ICDM, pp. 501–510 (2020) Sun et al. [2022] Sun, L., Ye, J., Peng, H., Yu, P.S.: A self-supervised riemannian GNN with time varying curvature for temporal graph learning. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pp. 1827–1836 (2022) Bai et al. [2023] Bai, Q., Nie, C., Zhang, H., Zhao, D., Yuan, X.: Hgwavenet: A hyperbolic graph neural network for temporal link prediction. In: Proceedings of the ACM Web Conference 2023, WWW, pp. 523–532 (2023) Petersen [2006] Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Bayati, M., Gerritsen, M., Gleich, D.F., Saberi, A., Wang, Y.: Algorithms for large, sparse network alignment problems. In: Proceedings of the Ninth IEEE International Conference on Data Mining, ICDM, pp. 705–710 (2009) Wang et al. [2020] Wang, F., Sun, L., Zhang, Z.: Hyperbolic user identity linkage across social networks. In: Proceedings of the Global Communications Conference, GLOBECOM 2020, IEEE, pp. 1–6 (2020) Sun et al. [2020] Sun, L., Zhang, Z., Zhang, J., Wang, F., Du, Y., Su, S., Yu, P.S.: Perfect: A hyperbolic embedding for joint user and community alignment. In: Proceedings of the 20th IEEE International Conference on Data Mining, ICDM, pp. 501–510 (2020) Sun et al. [2022] Sun, L., Ye, J., Peng, H., Yu, P.S.: A self-supervised riemannian GNN with time varying curvature for temporal graph learning. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pp. 1827–1836 (2022) Bai et al. [2023] Bai, Q., Nie, C., Zhang, H., Zhao, D., Yuan, X.: Hgwavenet: A hyperbolic graph neural network for temporal link prediction. In: Proceedings of the ACM Web Conference 2023, WWW, pp. 523–532 (2023) Petersen [2006] Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Wang, F., Sun, L., Zhang, Z.: Hyperbolic user identity linkage across social networks. In: Proceedings of the Global Communications Conference, GLOBECOM 2020, IEEE, pp. 1–6 (2020) Sun et al. [2020] Sun, L., Zhang, Z., Zhang, J., Wang, F., Du, Y., Su, S., Yu, P.S.: Perfect: A hyperbolic embedding for joint user and community alignment. In: Proceedings of the 20th IEEE International Conference on Data Mining, ICDM, pp. 501–510 (2020) Sun et al. [2022] Sun, L., Ye, J., Peng, H., Yu, P.S.: A self-supervised riemannian GNN with time varying curvature for temporal graph learning. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pp. 1827–1836 (2022) Bai et al. [2023] Bai, Q., Nie, C., Zhang, H., Zhao, D., Yuan, X.: Hgwavenet: A hyperbolic graph neural network for temporal link prediction. In: Proceedings of the ACM Web Conference 2023, WWW, pp. 523–532 (2023) Petersen [2006] Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Zhang, J., Wang, F., Du, Y., Su, S., Yu, P.S.: Perfect: A hyperbolic embedding for joint user and community alignment. In: Proceedings of the 20th IEEE International Conference on Data Mining, ICDM, pp. 501–510 (2020) Sun et al. [2022] Sun, L., Ye, J., Peng, H., Yu, P.S.: A self-supervised riemannian GNN with time varying curvature for temporal graph learning. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pp. 1827–1836 (2022) Bai et al. [2023] Bai, Q., Nie, C., Zhang, H., Zhao, D., Yuan, X.: Hgwavenet: A hyperbolic graph neural network for temporal link prediction. In: Proceedings of the ACM Web Conference 2023, WWW, pp. 523–532 (2023) Petersen [2006] Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Ye, J., Peng, H., Yu, P.S.: A self-supervised riemannian GNN with time varying curvature for temporal graph learning. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pp. 1827–1836 (2022) Bai et al. [2023] Bai, Q., Nie, C., Zhang, H., Zhao, D., Yuan, X.: Hgwavenet: A hyperbolic graph neural network for temporal link prediction. In: Proceedings of the ACM Web Conference 2023, WWW, pp. 523–532 (2023) Petersen [2006] Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Bai, Q., Nie, C., Zhang, H., Zhao, D., Yuan, X.: Hgwavenet: A hyperbolic graph neural network for temporal link prediction. In: Proceedings of the ACM Web Conference 2023, WWW, pp. 523–532 (2023) Petersen [2006] Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022)
- Kong, X., Zhang, J., Yu, P.S.: Inferring anchor links across multiple heterogeneous social networks. In: Proceedings of the 22nd ACM International Conference on Information and Knowledge Management, CIKM’13, CIKM, pp. 179–188 (2013) Zhan et al. [2019] Zhan, Q., Zhang, J., Yu, P.S.: Integrated anchor and social link predictions across multiple social networks. Knowl. Inf. Syst. 60(1), 303–326 (2019) Zhang and Tong [2016] Zhang, S., Tong, H.: FINAL: fast attributed network alignment. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD, pp. 1345–1354 (2016) Bayati et al. [2009] Bayati, M., Gerritsen, M., Gleich, D.F., Saberi, A., Wang, Y.: Algorithms for large, sparse network alignment problems. In: Proceedings of the Ninth IEEE International Conference on Data Mining, ICDM, pp. 705–710 (2009) Wang et al. [2020] Wang, F., Sun, L., Zhang, Z.: Hyperbolic user identity linkage across social networks. In: Proceedings of the Global Communications Conference, GLOBECOM 2020, IEEE, pp. 1–6 (2020) Sun et al. [2020] Sun, L., Zhang, Z., Zhang, J., Wang, F., Du, Y., Su, S., Yu, P.S.: Perfect: A hyperbolic embedding for joint user and community alignment. In: Proceedings of the 20th IEEE International Conference on Data Mining, ICDM, pp. 501–510 (2020) Sun et al. [2022] Sun, L., Ye, J., Peng, H., Yu, P.S.: A self-supervised riemannian GNN with time varying curvature for temporal graph learning. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pp. 1827–1836 (2022) Bai et al. [2023] Bai, Q., Nie, C., Zhang, H., Zhao, D., Yuan, X.: Hgwavenet: A hyperbolic graph neural network for temporal link prediction. In: Proceedings of the ACM Web Conference 2023, WWW, pp. 523–532 (2023) Petersen [2006] Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhan, Q., Zhang, J., Yu, P.S.: Integrated anchor and social link predictions across multiple social networks. Knowl. Inf. Syst. 60(1), 303–326 (2019) Zhang and Tong [2016] Zhang, S., Tong, H.: FINAL: fast attributed network alignment. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD, pp. 1345–1354 (2016) Bayati et al. [2009] Bayati, M., Gerritsen, M., Gleich, D.F., Saberi, A., Wang, Y.: Algorithms for large, sparse network alignment problems. In: Proceedings of the Ninth IEEE International Conference on Data Mining, ICDM, pp. 705–710 (2009) Wang et al. [2020] Wang, F., Sun, L., Zhang, Z.: Hyperbolic user identity linkage across social networks. In: Proceedings of the Global Communications Conference, GLOBECOM 2020, IEEE, pp. 1–6 (2020) Sun et al. [2020] Sun, L., Zhang, Z., Zhang, J., Wang, F., Du, Y., Su, S., Yu, P.S.: Perfect: A hyperbolic embedding for joint user and community alignment. In: Proceedings of the 20th IEEE International Conference on Data Mining, ICDM, pp. 501–510 (2020) Sun et al. [2022] Sun, L., Ye, J., Peng, H., Yu, P.S.: A self-supervised riemannian GNN with time varying curvature for temporal graph learning. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pp. 1827–1836 (2022) Bai et al. [2023] Bai, Q., Nie, C., Zhang, H., Zhao, D., Yuan, X.: Hgwavenet: A hyperbolic graph neural network for temporal link prediction. In: Proceedings of the ACM Web Conference 2023, WWW, pp. 523–532 (2023) Petersen [2006] Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhang, S., Tong, H.: FINAL: fast attributed network alignment. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD, pp. 1345–1354 (2016) Bayati et al. [2009] Bayati, M., Gerritsen, M., Gleich, D.F., Saberi, A., Wang, Y.: Algorithms for large, sparse network alignment problems. In: Proceedings of the Ninth IEEE International Conference on Data Mining, ICDM, pp. 705–710 (2009) Wang et al. [2020] Wang, F., Sun, L., Zhang, Z.: Hyperbolic user identity linkage across social networks. In: Proceedings of the Global Communications Conference, GLOBECOM 2020, IEEE, pp. 1–6 (2020) Sun et al. [2020] Sun, L., Zhang, Z., Zhang, J., Wang, F., Du, Y., Su, S., Yu, P.S.: Perfect: A hyperbolic embedding for joint user and community alignment. In: Proceedings of the 20th IEEE International Conference on Data Mining, ICDM, pp. 501–510 (2020) Sun et al. [2022] Sun, L., Ye, J., Peng, H., Yu, P.S.: A self-supervised riemannian GNN with time varying curvature for temporal graph learning. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pp. 1827–1836 (2022) Bai et al. [2023] Bai, Q., Nie, C., Zhang, H., Zhao, D., Yuan, X.: Hgwavenet: A hyperbolic graph neural network for temporal link prediction. In: Proceedings of the ACM Web Conference 2023, WWW, pp. 523–532 (2023) Petersen [2006] Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Bayati, M., Gerritsen, M., Gleich, D.F., Saberi, A., Wang, Y.: Algorithms for large, sparse network alignment problems. In: Proceedings of the Ninth IEEE International Conference on Data Mining, ICDM, pp. 705–710 (2009) Wang et al. [2020] Wang, F., Sun, L., Zhang, Z.: Hyperbolic user identity linkage across social networks. In: Proceedings of the Global Communications Conference, GLOBECOM 2020, IEEE, pp. 1–6 (2020) Sun et al. [2020] Sun, L., Zhang, Z., Zhang, J., Wang, F., Du, Y., Su, S., Yu, P.S.: Perfect: A hyperbolic embedding for joint user and community alignment. In: Proceedings of the 20th IEEE International Conference on Data Mining, ICDM, pp. 501–510 (2020) Sun et al. [2022] Sun, L., Ye, J., Peng, H., Yu, P.S.: A self-supervised riemannian GNN with time varying curvature for temporal graph learning. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pp. 1827–1836 (2022) Bai et al. [2023] Bai, Q., Nie, C., Zhang, H., Zhao, D., Yuan, X.: Hgwavenet: A hyperbolic graph neural network for temporal link prediction. In: Proceedings of the ACM Web Conference 2023, WWW, pp. 523–532 (2023) Petersen [2006] Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Wang, F., Sun, L., Zhang, Z.: Hyperbolic user identity linkage across social networks. In: Proceedings of the Global Communications Conference, GLOBECOM 2020, IEEE, pp. 1–6 (2020) Sun et al. [2020] Sun, L., Zhang, Z., Zhang, J., Wang, F., Du, Y., Su, S., Yu, P.S.: Perfect: A hyperbolic embedding for joint user and community alignment. In: Proceedings of the 20th IEEE International Conference on Data Mining, ICDM, pp. 501–510 (2020) Sun et al. [2022] Sun, L., Ye, J., Peng, H., Yu, P.S.: A self-supervised riemannian GNN with time varying curvature for temporal graph learning. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pp. 1827–1836 (2022) Bai et al. [2023] Bai, Q., Nie, C., Zhang, H., Zhao, D., Yuan, X.: Hgwavenet: A hyperbolic graph neural network for temporal link prediction. In: Proceedings of the ACM Web Conference 2023, WWW, pp. 523–532 (2023) Petersen [2006] Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Zhang, J., Wang, F., Du, Y., Su, S., Yu, P.S.: Perfect: A hyperbolic embedding for joint user and community alignment. In: Proceedings of the 20th IEEE International Conference on Data Mining, ICDM, pp. 501–510 (2020) Sun et al. [2022] Sun, L., Ye, J., Peng, H., Yu, P.S.: A self-supervised riemannian GNN with time varying curvature for temporal graph learning. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pp. 1827–1836 (2022) Bai et al. [2023] Bai, Q., Nie, C., Zhang, H., Zhao, D., Yuan, X.: Hgwavenet: A hyperbolic graph neural network for temporal link prediction. In: Proceedings of the ACM Web Conference 2023, WWW, pp. 523–532 (2023) Petersen [2006] Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Ye, J., Peng, H., Yu, P.S.: A self-supervised riemannian GNN with time varying curvature for temporal graph learning. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pp. 1827–1836 (2022) Bai et al. [2023] Bai, Q., Nie, C., Zhang, H., Zhao, D., Yuan, X.: Hgwavenet: A hyperbolic graph neural network for temporal link prediction. In: Proceedings of the ACM Web Conference 2023, WWW, pp. 523–532 (2023) Petersen [2006] Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Bai, Q., Nie, C., Zhang, H., Zhao, D., Yuan, X.: Hgwavenet: A hyperbolic graph neural network for temporal link prediction. In: Proceedings of the ACM Web Conference 2023, WWW, pp. 523–532 (2023) Petersen [2006] Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022)
- Zhan, Q., Zhang, J., Yu, P.S.: Integrated anchor and social link predictions across multiple social networks. Knowl. Inf. Syst. 60(1), 303–326 (2019) Zhang and Tong [2016] Zhang, S., Tong, H.: FINAL: fast attributed network alignment. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD, pp. 1345–1354 (2016) Bayati et al. [2009] Bayati, M., Gerritsen, M., Gleich, D.F., Saberi, A., Wang, Y.: Algorithms for large, sparse network alignment problems. In: Proceedings of the Ninth IEEE International Conference on Data Mining, ICDM, pp. 705–710 (2009) Wang et al. [2020] Wang, F., Sun, L., Zhang, Z.: Hyperbolic user identity linkage across social networks. In: Proceedings of the Global Communications Conference, GLOBECOM 2020, IEEE, pp. 1–6 (2020) Sun et al. [2020] Sun, L., Zhang, Z., Zhang, J., Wang, F., Du, Y., Su, S., Yu, P.S.: Perfect: A hyperbolic embedding for joint user and community alignment. In: Proceedings of the 20th IEEE International Conference on Data Mining, ICDM, pp. 501–510 (2020) Sun et al. [2022] Sun, L., Ye, J., Peng, H., Yu, P.S.: A self-supervised riemannian GNN with time varying curvature for temporal graph learning. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pp. 1827–1836 (2022) Bai et al. [2023] Bai, Q., Nie, C., Zhang, H., Zhao, D., Yuan, X.: Hgwavenet: A hyperbolic graph neural network for temporal link prediction. In: Proceedings of the ACM Web Conference 2023, WWW, pp. 523–532 (2023) Petersen [2006] Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhang, S., Tong, H.: FINAL: fast attributed network alignment. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD, pp. 1345–1354 (2016) Bayati et al. [2009] Bayati, M., Gerritsen, M., Gleich, D.F., Saberi, A., Wang, Y.: Algorithms for large, sparse network alignment problems. In: Proceedings of the Ninth IEEE International Conference on Data Mining, ICDM, pp. 705–710 (2009) Wang et al. [2020] Wang, F., Sun, L., Zhang, Z.: Hyperbolic user identity linkage across social networks. In: Proceedings of the Global Communications Conference, GLOBECOM 2020, IEEE, pp. 1–6 (2020) Sun et al. [2020] Sun, L., Zhang, Z., Zhang, J., Wang, F., Du, Y., Su, S., Yu, P.S.: Perfect: A hyperbolic embedding for joint user and community alignment. In: Proceedings of the 20th IEEE International Conference on Data Mining, ICDM, pp. 501–510 (2020) Sun et al. [2022] Sun, L., Ye, J., Peng, H., Yu, P.S.: A self-supervised riemannian GNN with time varying curvature for temporal graph learning. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pp. 1827–1836 (2022) Bai et al. [2023] Bai, Q., Nie, C., Zhang, H., Zhao, D., Yuan, X.: Hgwavenet: A hyperbolic graph neural network for temporal link prediction. In: Proceedings of the ACM Web Conference 2023, WWW, pp. 523–532 (2023) Petersen [2006] Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Bayati, M., Gerritsen, M., Gleich, D.F., Saberi, A., Wang, Y.: Algorithms for large, sparse network alignment problems. In: Proceedings of the Ninth IEEE International Conference on Data Mining, ICDM, pp. 705–710 (2009) Wang et al. [2020] Wang, F., Sun, L., Zhang, Z.: Hyperbolic user identity linkage across social networks. In: Proceedings of the Global Communications Conference, GLOBECOM 2020, IEEE, pp. 1–6 (2020) Sun et al. [2020] Sun, L., Zhang, Z., Zhang, J., Wang, F., Du, Y., Su, S., Yu, P.S.: Perfect: A hyperbolic embedding for joint user and community alignment. In: Proceedings of the 20th IEEE International Conference on Data Mining, ICDM, pp. 501–510 (2020) Sun et al. [2022] Sun, L., Ye, J., Peng, H., Yu, P.S.: A self-supervised riemannian GNN with time varying curvature for temporal graph learning. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pp. 1827–1836 (2022) Bai et al. [2023] Bai, Q., Nie, C., Zhang, H., Zhao, D., Yuan, X.: Hgwavenet: A hyperbolic graph neural network for temporal link prediction. In: Proceedings of the ACM Web Conference 2023, WWW, pp. 523–532 (2023) Petersen [2006] Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Wang, F., Sun, L., Zhang, Z.: Hyperbolic user identity linkage across social networks. In: Proceedings of the Global Communications Conference, GLOBECOM 2020, IEEE, pp. 1–6 (2020) Sun et al. [2020] Sun, L., Zhang, Z., Zhang, J., Wang, F., Du, Y., Su, S., Yu, P.S.: Perfect: A hyperbolic embedding for joint user and community alignment. In: Proceedings of the 20th IEEE International Conference on Data Mining, ICDM, pp. 501–510 (2020) Sun et al. [2022] Sun, L., Ye, J., Peng, H., Yu, P.S.: A self-supervised riemannian GNN with time varying curvature for temporal graph learning. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pp. 1827–1836 (2022) Bai et al. [2023] Bai, Q., Nie, C., Zhang, H., Zhao, D., Yuan, X.: Hgwavenet: A hyperbolic graph neural network for temporal link prediction. In: Proceedings of the ACM Web Conference 2023, WWW, pp. 523–532 (2023) Petersen [2006] Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Zhang, J., Wang, F., Du, Y., Su, S., Yu, P.S.: Perfect: A hyperbolic embedding for joint user and community alignment. In: Proceedings of the 20th IEEE International Conference on Data Mining, ICDM, pp. 501–510 (2020) Sun et al. [2022] Sun, L., Ye, J., Peng, H., Yu, P.S.: A self-supervised riemannian GNN with time varying curvature for temporal graph learning. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pp. 1827–1836 (2022) Bai et al. [2023] Bai, Q., Nie, C., Zhang, H., Zhao, D., Yuan, X.: Hgwavenet: A hyperbolic graph neural network for temporal link prediction. In: Proceedings of the ACM Web Conference 2023, WWW, pp. 523–532 (2023) Petersen [2006] Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Ye, J., Peng, H., Yu, P.S.: A self-supervised riemannian GNN with time varying curvature for temporal graph learning. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pp. 1827–1836 (2022) Bai et al. [2023] Bai, Q., Nie, C., Zhang, H., Zhao, D., Yuan, X.: Hgwavenet: A hyperbolic graph neural network for temporal link prediction. In: Proceedings of the ACM Web Conference 2023, WWW, pp. 523–532 (2023) Petersen [2006] Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Bai, Q., Nie, C., Zhang, H., Zhao, D., Yuan, X.: Hgwavenet: A hyperbolic graph neural network for temporal link prediction. In: Proceedings of the ACM Web Conference 2023, WWW, pp. 523–532 (2023) Petersen [2006] Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022)
- Zhang, S., Tong, H.: FINAL: fast attributed network alignment. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD, pp. 1345–1354 (2016) Bayati et al. [2009] Bayati, M., Gerritsen, M., Gleich, D.F., Saberi, A., Wang, Y.: Algorithms for large, sparse network alignment problems. In: Proceedings of the Ninth IEEE International Conference on Data Mining, ICDM, pp. 705–710 (2009) Wang et al. [2020] Wang, F., Sun, L., Zhang, Z.: Hyperbolic user identity linkage across social networks. In: Proceedings of the Global Communications Conference, GLOBECOM 2020, IEEE, pp. 1–6 (2020) Sun et al. [2020] Sun, L., Zhang, Z., Zhang, J., Wang, F., Du, Y., Su, S., Yu, P.S.: Perfect: A hyperbolic embedding for joint user and community alignment. In: Proceedings of the 20th IEEE International Conference on Data Mining, ICDM, pp. 501–510 (2020) Sun et al. [2022] Sun, L., Ye, J., Peng, H., Yu, P.S.: A self-supervised riemannian GNN with time varying curvature for temporal graph learning. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pp. 1827–1836 (2022) Bai et al. [2023] Bai, Q., Nie, C., Zhang, H., Zhao, D., Yuan, X.: Hgwavenet: A hyperbolic graph neural network for temporal link prediction. In: Proceedings of the ACM Web Conference 2023, WWW, pp. 523–532 (2023) Petersen [2006] Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Bayati, M., Gerritsen, M., Gleich, D.F., Saberi, A., Wang, Y.: Algorithms for large, sparse network alignment problems. In: Proceedings of the Ninth IEEE International Conference on Data Mining, ICDM, pp. 705–710 (2009) Wang et al. [2020] Wang, F., Sun, L., Zhang, Z.: Hyperbolic user identity linkage across social networks. In: Proceedings of the Global Communications Conference, GLOBECOM 2020, IEEE, pp. 1–6 (2020) Sun et al. [2020] Sun, L., Zhang, Z., Zhang, J., Wang, F., Du, Y., Su, S., Yu, P.S.: Perfect: A hyperbolic embedding for joint user and community alignment. In: Proceedings of the 20th IEEE International Conference on Data Mining, ICDM, pp. 501–510 (2020) Sun et al. [2022] Sun, L., Ye, J., Peng, H., Yu, P.S.: A self-supervised riemannian GNN with time varying curvature for temporal graph learning. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pp. 1827–1836 (2022) Bai et al. [2023] Bai, Q., Nie, C., Zhang, H., Zhao, D., Yuan, X.: Hgwavenet: A hyperbolic graph neural network for temporal link prediction. In: Proceedings of the ACM Web Conference 2023, WWW, pp. 523–532 (2023) Petersen [2006] Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Wang, F., Sun, L., Zhang, Z.: Hyperbolic user identity linkage across social networks. In: Proceedings of the Global Communications Conference, GLOBECOM 2020, IEEE, pp. 1–6 (2020) Sun et al. [2020] Sun, L., Zhang, Z., Zhang, J., Wang, F., Du, Y., Su, S., Yu, P.S.: Perfect: A hyperbolic embedding for joint user and community alignment. In: Proceedings of the 20th IEEE International Conference on Data Mining, ICDM, pp. 501–510 (2020) Sun et al. [2022] Sun, L., Ye, J., Peng, H., Yu, P.S.: A self-supervised riemannian GNN with time varying curvature for temporal graph learning. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pp. 1827–1836 (2022) Bai et al. [2023] Bai, Q., Nie, C., Zhang, H., Zhao, D., Yuan, X.: Hgwavenet: A hyperbolic graph neural network for temporal link prediction. In: Proceedings of the ACM Web Conference 2023, WWW, pp. 523–532 (2023) Petersen [2006] Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Zhang, J., Wang, F., Du, Y., Su, S., Yu, P.S.: Perfect: A hyperbolic embedding for joint user and community alignment. In: Proceedings of the 20th IEEE International Conference on Data Mining, ICDM, pp. 501–510 (2020) Sun et al. [2022] Sun, L., Ye, J., Peng, H., Yu, P.S.: A self-supervised riemannian GNN with time varying curvature for temporal graph learning. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pp. 1827–1836 (2022) Bai et al. [2023] Bai, Q., Nie, C., Zhang, H., Zhao, D., Yuan, X.: Hgwavenet: A hyperbolic graph neural network for temporal link prediction. In: Proceedings of the ACM Web Conference 2023, WWW, pp. 523–532 (2023) Petersen [2006] Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Ye, J., Peng, H., Yu, P.S.: A self-supervised riemannian GNN with time varying curvature for temporal graph learning. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pp. 1827–1836 (2022) Bai et al. [2023] Bai, Q., Nie, C., Zhang, H., Zhao, D., Yuan, X.: Hgwavenet: A hyperbolic graph neural network for temporal link prediction. In: Proceedings of the ACM Web Conference 2023, WWW, pp. 523–532 (2023) Petersen [2006] Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Bai, Q., Nie, C., Zhang, H., Zhao, D., Yuan, X.: Hgwavenet: A hyperbolic graph neural network for temporal link prediction. In: Proceedings of the ACM Web Conference 2023, WWW, pp. 523–532 (2023) Petersen [2006] Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022)
- Bayati, M., Gerritsen, M., Gleich, D.F., Saberi, A., Wang, Y.: Algorithms for large, sparse network alignment problems. In: Proceedings of the Ninth IEEE International Conference on Data Mining, ICDM, pp. 705–710 (2009) Wang et al. [2020] Wang, F., Sun, L., Zhang, Z.: Hyperbolic user identity linkage across social networks. In: Proceedings of the Global Communications Conference, GLOBECOM 2020, IEEE, pp. 1–6 (2020) Sun et al. [2020] Sun, L., Zhang, Z., Zhang, J., Wang, F., Du, Y., Su, S., Yu, P.S.: Perfect: A hyperbolic embedding for joint user and community alignment. In: Proceedings of the 20th IEEE International Conference on Data Mining, ICDM, pp. 501–510 (2020) Sun et al. [2022] Sun, L., Ye, J., Peng, H., Yu, P.S.: A self-supervised riemannian GNN with time varying curvature for temporal graph learning. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pp. 1827–1836 (2022) Bai et al. [2023] Bai, Q., Nie, C., Zhang, H., Zhao, D., Yuan, X.: Hgwavenet: A hyperbolic graph neural network for temporal link prediction. In: Proceedings of the ACM Web Conference 2023, WWW, pp. 523–532 (2023) Petersen [2006] Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Wang, F., Sun, L., Zhang, Z.: Hyperbolic user identity linkage across social networks. In: Proceedings of the Global Communications Conference, GLOBECOM 2020, IEEE, pp. 1–6 (2020) Sun et al. [2020] Sun, L., Zhang, Z., Zhang, J., Wang, F., Du, Y., Su, S., Yu, P.S.: Perfect: A hyperbolic embedding for joint user and community alignment. In: Proceedings of the 20th IEEE International Conference on Data Mining, ICDM, pp. 501–510 (2020) Sun et al. [2022] Sun, L., Ye, J., Peng, H., Yu, P.S.: A self-supervised riemannian GNN with time varying curvature for temporal graph learning. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pp. 1827–1836 (2022) Bai et al. [2023] Bai, Q., Nie, C., Zhang, H., Zhao, D., Yuan, X.: Hgwavenet: A hyperbolic graph neural network for temporal link prediction. In: Proceedings of the ACM Web Conference 2023, WWW, pp. 523–532 (2023) Petersen [2006] Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Zhang, J., Wang, F., Du, Y., Su, S., Yu, P.S.: Perfect: A hyperbolic embedding for joint user and community alignment. In: Proceedings of the 20th IEEE International Conference on Data Mining, ICDM, pp. 501–510 (2020) Sun et al. [2022] Sun, L., Ye, J., Peng, H., Yu, P.S.: A self-supervised riemannian GNN with time varying curvature for temporal graph learning. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pp. 1827–1836 (2022) Bai et al. [2023] Bai, Q., Nie, C., Zhang, H., Zhao, D., Yuan, X.: Hgwavenet: A hyperbolic graph neural network for temporal link prediction. In: Proceedings of the ACM Web Conference 2023, WWW, pp. 523–532 (2023) Petersen [2006] Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Ye, J., Peng, H., Yu, P.S.: A self-supervised riemannian GNN with time varying curvature for temporal graph learning. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pp. 1827–1836 (2022) Bai et al. [2023] Bai, Q., Nie, C., Zhang, H., Zhao, D., Yuan, X.: Hgwavenet: A hyperbolic graph neural network for temporal link prediction. In: Proceedings of the ACM Web Conference 2023, WWW, pp. 523–532 (2023) Petersen [2006] Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Bai, Q., Nie, C., Zhang, H., Zhao, D., Yuan, X.: Hgwavenet: A hyperbolic graph neural network for temporal link prediction. In: Proceedings of the ACM Web Conference 2023, WWW, pp. 523–532 (2023) Petersen [2006] Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022)
- Wang, F., Sun, L., Zhang, Z.: Hyperbolic user identity linkage across social networks. In: Proceedings of the Global Communications Conference, GLOBECOM 2020, IEEE, pp. 1–6 (2020) Sun et al. [2020] Sun, L., Zhang, Z., Zhang, J., Wang, F., Du, Y., Su, S., Yu, P.S.: Perfect: A hyperbolic embedding for joint user and community alignment. In: Proceedings of the 20th IEEE International Conference on Data Mining, ICDM, pp. 501–510 (2020) Sun et al. [2022] Sun, L., Ye, J., Peng, H., Yu, P.S.: A self-supervised riemannian GNN with time varying curvature for temporal graph learning. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pp. 1827–1836 (2022) Bai et al. [2023] Bai, Q., Nie, C., Zhang, H., Zhao, D., Yuan, X.: Hgwavenet: A hyperbolic graph neural network for temporal link prediction. In: Proceedings of the ACM Web Conference 2023, WWW, pp. 523–532 (2023) Petersen [2006] Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Zhang, J., Wang, F., Du, Y., Su, S., Yu, P.S.: Perfect: A hyperbolic embedding for joint user and community alignment. In: Proceedings of the 20th IEEE International Conference on Data Mining, ICDM, pp. 501–510 (2020) Sun et al. [2022] Sun, L., Ye, J., Peng, H., Yu, P.S.: A self-supervised riemannian GNN with time varying curvature for temporal graph learning. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pp. 1827–1836 (2022) Bai et al. [2023] Bai, Q., Nie, C., Zhang, H., Zhao, D., Yuan, X.: Hgwavenet: A hyperbolic graph neural network for temporal link prediction. In: Proceedings of the ACM Web Conference 2023, WWW, pp. 523–532 (2023) Petersen [2006] Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Ye, J., Peng, H., Yu, P.S.: A self-supervised riemannian GNN with time varying curvature for temporal graph learning. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pp. 1827–1836 (2022) Bai et al. [2023] Bai, Q., Nie, C., Zhang, H., Zhao, D., Yuan, X.: Hgwavenet: A hyperbolic graph neural network for temporal link prediction. In: Proceedings of the ACM Web Conference 2023, WWW, pp. 523–532 (2023) Petersen [2006] Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Bai, Q., Nie, C., Zhang, H., Zhao, D., Yuan, X.: Hgwavenet: A hyperbolic graph neural network for temporal link prediction. In: Proceedings of the ACM Web Conference 2023, WWW, pp. 523–532 (2023) Petersen [2006] Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022)
- Sun, L., Zhang, Z., Zhang, J., Wang, F., Du, Y., Su, S., Yu, P.S.: Perfect: A hyperbolic embedding for joint user and community alignment. In: Proceedings of the 20th IEEE International Conference on Data Mining, ICDM, pp. 501–510 (2020) Sun et al. [2022] Sun, L., Ye, J., Peng, H., Yu, P.S.: A self-supervised riemannian GNN with time varying curvature for temporal graph learning. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pp. 1827–1836 (2022) Bai et al. [2023] Bai, Q., Nie, C., Zhang, H., Zhao, D., Yuan, X.: Hgwavenet: A hyperbolic graph neural network for temporal link prediction. In: Proceedings of the ACM Web Conference 2023, WWW, pp. 523–532 (2023) Petersen [2006] Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Ye, J., Peng, H., Yu, P.S.: A self-supervised riemannian GNN with time varying curvature for temporal graph learning. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pp. 1827–1836 (2022) Bai et al. [2023] Bai, Q., Nie, C., Zhang, H., Zhao, D., Yuan, X.: Hgwavenet: A hyperbolic graph neural network for temporal link prediction. In: Proceedings of the ACM Web Conference 2023, WWW, pp. 523–532 (2023) Petersen [2006] Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Bai, Q., Nie, C., Zhang, H., Zhao, D., Yuan, X.: Hgwavenet: A hyperbolic graph neural network for temporal link prediction. In: Proceedings of the ACM Web Conference 2023, WWW, pp. 523–532 (2023) Petersen [2006] Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022)
- Sun, L., Ye, J., Peng, H., Yu, P.S.: A self-supervised riemannian GNN with time varying curvature for temporal graph learning. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pp. 1827–1836 (2022) Bai et al. [2023] Bai, Q., Nie, C., Zhang, H., Zhao, D., Yuan, X.: Hgwavenet: A hyperbolic graph neural network for temporal link prediction. In: Proceedings of the ACM Web Conference 2023, WWW, pp. 523–532 (2023) Petersen [2006] Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Bai, Q., Nie, C., Zhang, H., Zhao, D., Yuan, X.: Hgwavenet: A hyperbolic graph neural network for temporal link prediction. In: Proceedings of the ACM Web Conference 2023, WWW, pp. 523–532 (2023) Petersen [2006] Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022)
- Bai, Q., Nie, C., Zhang, H., Zhao, D., Yuan, X.: Hgwavenet: A hyperbolic graph neural network for temporal link prediction. In: Proceedings of the ACM Web Conference 2023, WWW, pp. 523–532 (2023) Petersen [2006] Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022)
- Petersen, P.: Riemannian Geometry vol. 171, (2006) Bachmann et al. [2020] Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022)
- Bachmann, G., Bécigneul, G., Ganea, O.: Constant curvature graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Chami et al. [2019] Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022)
- Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS, pp. 4869–4880 (2019) Chen et al. [2013] Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022)
- Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and treelike random graphs. Internet Math. 9(4), 434–491 (2013) Shen et al. [2023] Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022)
- Shen, X., Sun, D., Pan, S., Zhou, X., Yang, L.T.: Neighbor contrastive learning on learnable graph augmentation. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 9782–9791 (2023) Zhu et al. [2021] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022)
- Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, WWW, pp. 2069–2080 (2021) Yu et al. [2022] Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022)
- Yu, L., Pei, S., Ding, L., Zhou, J., Li, L., Zhang, C., Zhang, X.: SAIL: self-augmented graph contrastive learning. In: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 8927–8935 (2022) Sun et al. [2023a] Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022)
- Sun, L., Ye, J., Peng, H., Wang, F., Yu, P.S.: Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 4633–4642 (2023) Sun et al. [2023b] Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022)
- Sun, L., Ye, J., Zhang, J., Yang, Y., Liu, M., Wang, F., Yu, P.S.: Contrastive sequential interaction network learning on co-evolving riemannian spaces. International Journal of Machine Learning and Cybernetics (2023) Sun et al. [2023c] Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022)
- Sun, L., Wang, F., Ye, J., Peng, H., Yu, P.S.: CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2296–2305 (2023) Hassani and Ahmadi [2020] Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022)
- Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML (2020) Combe et al. [2015] Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022)
- Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-louvain: An attributed graph clustering method. In: Proceedings of the Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA, vol. 9385, pp. 181–192 (2015) Velickovic et al. [2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022)
- Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, ICLR 2018 (2018) Ollivier [2009] Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022)
- Ollivier, Y.: Ricci curvature of markov chains on metric spaces. Academic Press (3) (2009) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022)
- Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 1597–1607 (2020) Cao and Yu [2016] Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022)
- Cao, X., Yu, Y.: Asnets: A benchmark dataset of aligned social networks for cross-platform user modeling. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1881–1884 (2016) Sun et al. [2023] Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022)
- Sun, L., Zhang, Z., Wang, F., Ji, P., Wen, J., Su, S., Yu, P.S.: Aligning dynamic social networks: An optimization over dynamic graph autoencoder. IEEE Trans. Knowl. Data Eng. 35(6), 5597–5611 (2023) Sun et al. [2017] Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022)
- Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference, ISWC, vol. 10587, pp. 628–644 (2017) Tang et al. [2008] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022)
- Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008) Kipf and Welling [2017] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022)
- Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR (2017) Wu et al. [2022] Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022)
- Wu, M., Pan, S., Zhu, X.: Attraction and repulsion: Unsupervised domain adaptive graph contrastive learning network. IEEE Transactions on Emerging Topics in Computational Intelligence 6(5), 1079–1091 (2022) Zhang et al. [2019] Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022)
- Zhang, S., Tong, H., Maciejewski, R., Eliassi-Rad, T.: Multilevel network alignment. In: Proceedings of the World Wide Web Conference, WWW, pp. 2344–2354 (2019) Qin et al. [2020] Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022)
- Qin, K.K., Salim, F.D., Ren, Y., Shao, W., Heimann, M., Koutra, D.: G-CREWE: graph compression with embedding for network alignment. CoRR abs/2007.16208 (2020) Li et al. [2019] Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022)
- Li, C., Wang, S., Wang, Y., Yu, P.S., Liang, Y., Liu, Y., Li, Z.: Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 996–1003 (2019) Zhou et al. [2020] Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022)
- Zhou, F., Cao, C., Trajcevski, G., Zhang, K., Zhong, T., Geng, J.: Fast network alignment via graph meta-learning. In: Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 686–695 (2020) Liu et al. [2020] Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022)
- Liu, L., Li, X., Cheung, W.K., Liao, L.: Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering 32(9), 1824–1837 (2020) Zhang et al. [2021] Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022)
- Zhang, S., Tong, H., Jin, L., Xia, Y., Guo, Y.: Balancing consistency and disparity in network alignment. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 2212–2222 (2021) Huynh et al. [2023] Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022)
- Huynh, T.T., Duong, C.T., Nguyen, T.T., Van, V.T., Sattar, A., Yin, H., Nguyen, Q.V.H.: Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering 35(2), 1881–1894 (2023) Nickel and Kiela [2017] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022)
- Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, NIPS, pp. 6338–6347 (2017) Zhang et al. [2022] Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022)
- Zhang, Y., Wang, X., Liu, N., Shi, C.: Embedding heterogeneous information network in hyperbolic spaces. ACM Trans. Knowl. Discov. Data 16(2), 35–13523 (2022) Lai et al. [2021] Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022)
- Lai, D., Liu, Z., Huang, J., Chong, Z., Wu, W., Nardini, C.: Attention based subgraph classification for link prediction by network re-weighting. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, CIKM, pp. 3171–3175 (2021) Jiao et al. [2019] Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022)
- Jiao, Y., Xiong, Y., Zhang, J., Zhu, Y.: Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 419–428 (2019) Zhou et al. [2018] Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022)
- Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: A deep learning approach for user identity linkage. In: Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM, pp. 1313–1321 (2018) Liu et al. [2016] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022)
- Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1774–1780 (2016) Sun et al. [2023] Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022)
- Sun, L., Du, Y., Gao, S., Ye, J., Wang, F., Ren, F., Liang, M., Wang, Y., Wang, S.: Groupaligner: A deep reinforcement learning with domain adaptation for social group alignment. ACM Trans. Web 17(3), 17–11730 (2023) Huynh et al. [2020] Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022)
- Huynh, T.T., Tong, V.V., Nguyen, T.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th IEEE International Conference on Data Engineering, ICDE, pp. 85–96 (2020) Sun et al. [2023] Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022)
- Sun, L., Zhang, Z., Li, G., Ji, P., Su, S., Yu, P.S.: Mc2: Unsupervised multiple social network alignment. ACM Trans. Intell. Syst. Technol. 14(4), 70–17022 (2023) Gao et al. [2021] Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022)
- Gao, J., Huang, X., Li, J.: Unsupervised graph alignment with wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 426–435 (2021) Zhou et al. [2022] Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022)
- Zhou, Y., Ren, J., Jin, R., Zhang, Z., Zheng, J., Jiang, Z., Yan, D., Dou, D.: Unsupervised adversarial network alignment with reinforcement learning. ACM Trans. Knowl. Discov. Data 16(3), 50–15029 (2022) Niu et al. [2020] Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022)
- Niu, M., Cheng, B., Feng, Y., Chen, J.: Gmta: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Transactions on Network and Service Management 17(3), 1568–1581 (2020) Ding et al. [2023] Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022)
- Ding, K., Wang, Y., Yang, Y., Liu, H.: Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, pp. 7378–7386 (2023) Jin et al. [2022] Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022)
- Jin, D., Wang, L., Zheng, Y., Li, X., Jiang, F., Lin, W., Pan, S.: CGMN: A contrastive graph matching network for self-supervised graph similarity learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2101–2107 (2022) Wu et al. [2023] Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022)
- Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. 35(4), 4216–4235 (2023) Liu et al. [2023] Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022)
- Liu, Y., Lang, B., Quan, F.: MST-HGCN: a minimum spanning tree hyperbolic graph convolutional network. Appl. Intell. 53(11), 14515–14526 (2023) Fan et al. [2021] Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022)
- Fan, X., Gao, Z., Wu, Y., Jia, Y., Harandi, M.: Learning a gradient-free riemannian optimizer on tangent spaces. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 7377–7384 (2021) Sun et al. [2021] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022)
- Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., Yu, P.S.: Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp. 4375–4383 (2021) Sun et al. [2022] Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022) Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022)
- Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., Yu, P.S.: A self-supervised mixed-curvature graph neural network. In: Proceedings of the 36th AAAI, pp. 4146–4155 (2022)
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.