Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Machine learning predicts long-term mortality after acute myocardial infarction using systolic time intervals and routinely collected clinical data (2403.01533v1)

Published 3 Mar 2024 in cs.LG, cs.AI, and eess.SP

Abstract: Precise estimation of cardiac patients' current and future comorbidities is an important factor in prioritizing continuous physiological monitoring and new therapies. ML models have shown satisfactory performance in short-term mortality prediction of patients with heart disease, while their utility in long-term predictions is limited. This study aims to investigate the performance of tree-based ML models on long-term mortality prediction and the effect of two recently introduced biomarkers on long-term mortality. This study utilized publicly available data from CCHIA at the Ministry of Health and Welfare, Taiwan, China. Medical records were used to gather demographic and clinical data, including age, gender, BMI, percutaneous coronary intervention (PCI) status, and comorbidities such as hypertension, dyslipidemia, ST-segment elevation myocardial infarction (STEMI), and non-STEMI. Using medical and demographic records as well as two recently introduced biomarkers, brachial pre-ejection period (bPEP) and brachial ejection time (bET), collected from 139 patients with acute myocardial infarction, we investigated the performance of advanced ensemble tree-based ML algorithms (random forest, AdaBoost, and XGBoost) to predict all-cause mortality within 14 years. The developed ML models achieved significantly better performance compared to the baseline LR (C-Statistic, 0.80 for random forest, 0.79 for AdaBoost, and 0.78 for XGBoost, vs 0.77 for LR) (P-RF<0.001, PAdaBoost<0.001, PXGBoost<0.05). Adding bPEP and bET to our feature set significantly improved the algorithms' performance, leading to an absolute increase in C-Statistic of up to 0.03 (C-Statistic, 0.83 for random forest, 0.82 for AdaBoost, and 0.80 for XGBoost, vs 0.74 for LR) (P-RF<0.001, PAdaBoost<0.001, PXGBoost<0.05). This advancement may enable better treatment prioritization for high-risk individuals.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
Citations (1)