Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SANGRIA: Stacked Autoencoder Neural Networks with Gradient Boosting for Indoor Localization (2403.01348v1)

Published 3 Mar 2024 in cs.LG, cs.AI, and eess.SP

Abstract: Indoor localization is a critical task in many embedded applications, such as asset tracking, emergency response, and realtime navigation. In this article, we propose a novel fingerprintingbased framework for indoor localization called SANGRIA that uses stacked autoencoder neural networks with gradient boosted trees. Our approach is designed to overcome the device heterogeneity challenge that can create uncertainty in wireless signal measurements across embedded devices used for localization. We compare SANGRIA to several state-of-the-art frameworks and demonstrate 42.96% lower average localization error across diverse indoor locales and heterogeneous devices.

Citations (7)

Summary

We haven't generated a summary for this paper yet.