Enabling large-depth simulation of noisy quantum circuits with positive tensor networks (2403.00152v1)
Abstract: Matrix product density operators (MPDOs) are tensor network representations of locally purified density matrices where each physical degree of freedom is associated to an environment degree of freedom. MPDOs have interesting properties for mixed state representations: guaranteed positivity by construction, efficient conservation of the trace and computation of local observables. However, they have been challenging to use for noisy quantum circuit simulation, as the application of noise increases the dimension of the environment Hilbert space, leading to an exponential growth of bond dimensions. MPDOs also lack a unique canonical form, due to the freedom in the choice of basis for the environment Hilbert space, which leads to a vast variation of bond dimensions. In this work, we present a systematic way to reduce the bond dimensions of MPDOs by disentangling the purified state. We optimize the basis for the environment Hilbert space by performing density matrix renormalization group (DMRG)-like sweeps of local 2-qubit basis optimization. Interestingly, we find that targeting only the disentanglement of the purified state leads to a reduction of the environment dimension. In other words, a compact MPDO representation requires a low-entanglement purified state. We apply our compression method to the emulation of noisy random quantum circuits. Our technique allows us to keep bounded bond dimensions, and thus bounded memory, contrary to previous works on MPDOs, while keeping reasonable truncation fidelities.
- G. Vidal, Physical Review Letters 91, 147902 (2003).
- A. Dang, C. D. Hill, and L. C. L. Hollenberg, Quantum 3, 116 (2019).
- B. Kloss, D. Reichman, and Y. Bar Lev, SciPost Physics 9, 070 (2020).
- G. Evenbly and G. Vidal, Journal of Statistical Physics 157, 931 (2014).
- M. P. Zaletel and F. Pollmann, Physical Review Letters 124, 037201 (2020).
- S.-H. Lin, M. P. Zaletel, and F. Pollmann, Physical Review B 106, 245102 (2022).
- K. Noh, L. Jiang, and B. Fefferman, Quantum 4, 318 (2020).
- F. Verstraete, J. J. García-Ripoll, and J. I. Cirac, Physical Review Letters 93, 207204 (2004), arXiv:0406426v2 [cond-mat] .
- M. Zwolak and G. Vidal, Physical Review Letters 93, 207205 (2004).
- T. Prosen and M. Žnidarič, Journal of Statistical Mechanics: Theory and Experiment 2009, P02035 (2009).
- G. De Las Cuevas and T. Netzer, Journal of Mathematical Physics 61, 041901 (2020), arXiv:1907.03664 .
- D. Jaschke, S. Montangero, and L. D. Carr, Quantum Science and Technology 4, 013001 (2018).
- T. Pokart, C. Lehmann, and J. C. Budich, (2023), arXiv:2309.07961 [cond-mat.str-el] .
- J. Surace, M. Piani, and L. Tagliacozzo, Physical Review B 99, 235115 (2019).
- Y. Guo and S. Yang, (2023a), arXiv:2307.16381 [quant-ph] .
- U. Schollwöck, in Strongly Correlated Systems: Numerical Methods, Springer Series in Solid-State Sciences, edited by A. Avella and F. Mancini (Springer, Berlin, Heidelberg, 2013) pp. 67–98.
- C. Karrasch, J. H. Bardarson, and J. E. Moore, Physical Review Letters 108, 227206 (2012).
- C. Karrasch, J. H. Bardarson, and J. E. Moore, New Journal of Physics 15, 083031 (2013).
- T. Barthel, New Journal of Physics 15, 073010 (2013).
- C. Guo, Physical Review B 105, 195152 (2022).
- J. C. Bridgeman and C. T. Chubb, Journal of Physics A: Mathematical and Theoretical 50, 223001 (2017).
- A. Rényi, in Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Contributions to the Theory of Statistics, Vol. 4.1 (University of California Press, 1961) pp. 547–562.
- G. Li, Y. Ding, and Y. Xie, (2019), arXiv:1809.02573 .
- S. Martiel and T. G. de Brugière, (2020), arXiv:2012.09663 .
- J. M. Renes, Quantum Information Theory (De Gruyter Oldenbourg, Berlin, Boston, 2022).
- A. Uhlmann, Reports on Mathematical Physics 9, 273 (1976).
- X. Wang, C.-S. Yu, and X. Yi, Physics Letters A 373, 58 (2008).
- Y. Guo and S. Yang, (2023b), arXiv:2312.02854 [quant-ph] .
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.