Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 40 tok/s
GPT-5 High 38 tok/s Pro
GPT-4o 101 tok/s
GPT OSS 120B 470 tok/s Pro
Kimi K2 161 tok/s Pro
2000 character limit reached

Enabling large-depth simulation of noisy quantum circuits with positive tensor networks (2403.00152v1)

Published 29 Feb 2024 in quant-ph and cond-mat.stat-mech

Abstract: Matrix product density operators (MPDOs) are tensor network representations of locally purified density matrices where each physical degree of freedom is associated to an environment degree of freedom. MPDOs have interesting properties for mixed state representations: guaranteed positivity by construction, efficient conservation of the trace and computation of local observables. However, they have been challenging to use for noisy quantum circuit simulation, as the application of noise increases the dimension of the environment Hilbert space, leading to an exponential growth of bond dimensions. MPDOs also lack a unique canonical form, due to the freedom in the choice of basis for the environment Hilbert space, which leads to a vast variation of bond dimensions. In this work, we present a systematic way to reduce the bond dimensions of MPDOs by disentangling the purified state. We optimize the basis for the environment Hilbert space by performing density matrix renormalization group (DMRG)-like sweeps of local 2-qubit basis optimization. Interestingly, we find that targeting only the disentanglement of the purified state leads to a reduction of the environment dimension. In other words, a compact MPDO representation requires a low-entanglement purified state. We apply our compression method to the emulation of noisy random quantum circuits. Our technique allows us to keep bounded bond dimensions, and thus bounded memory, contrary to previous works on MPDOs, while keeping reasonable truncation fidelities.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (28)
  1. G. Vidal, Physical Review Letters 91, 147902 (2003).
  2. A. Dang, C. D. Hill, and L. C. L. Hollenberg, Quantum 3, 116 (2019).
  3. B. Kloss, D. Reichman, and Y. Bar Lev, SciPost Physics 9, 070 (2020).
  4. G. Evenbly and G. Vidal, Journal of Statistical Physics 157, 931 (2014).
  5. M. P. Zaletel and F. Pollmann, Physical Review Letters 124, 037201 (2020).
  6. S.-H. Lin, M. P. Zaletel, and F. Pollmann, Physical Review B 106, 245102 (2022).
  7. K. Noh, L. Jiang, and B. Fefferman, Quantum 4, 318 (2020).
  8. F. Verstraete, J. J. García-Ripoll, and J. I. Cirac, Physical Review Letters 93, 207204 (2004), arXiv:0406426v2 [cond-mat] .
  9. M. Zwolak and G. Vidal, Physical Review Letters 93, 207205 (2004).
  10. T. Prosen and M. Žnidarič, Journal of Statistical Mechanics: Theory and Experiment 2009, P02035 (2009).
  11. G. De Las Cuevas and T. Netzer, Journal of Mathematical Physics 61, 041901 (2020), arXiv:1907.03664 .
  12. D. Jaschke, S. Montangero, and L. D. Carr, Quantum Science and Technology 4, 013001 (2018).
  13. T. Pokart, C. Lehmann, and J. C. Budich,   (2023), arXiv:2309.07961 [cond-mat.str-el] .
  14. J. Surace, M. Piani, and L. Tagliacozzo, Physical Review B 99, 235115 (2019).
  15. Y. Guo and S. Yang,   (2023a), arXiv:2307.16381 [quant-ph] .
  16. U. Schollwöck, in Strongly Correlated Systems: Numerical Methods, Springer Series in Solid-State Sciences, edited by A. Avella and F. Mancini (Springer, Berlin, Heidelberg, 2013) pp. 67–98.
  17. C. Karrasch, J. H. Bardarson, and J. E. Moore, Physical Review Letters 108, 227206 (2012).
  18. C. Karrasch, J. H. Bardarson, and J. E. Moore, New Journal of Physics 15, 083031 (2013).
  19. T. Barthel, New Journal of Physics 15, 073010 (2013).
  20. C. Guo, Physical Review B 105, 195152 (2022).
  21. J. C. Bridgeman and C. T. Chubb, Journal of Physics A: Mathematical and Theoretical 50, 223001 (2017).
  22. A. Rényi, in Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Contributions to the Theory of Statistics, Vol. 4.1 (University of California Press, 1961) pp. 547–562.
  23. G. Li, Y. Ding, and Y. Xie,   (2019), arXiv:1809.02573 .
  24. S. Martiel and T. G. de Brugière,   (2020), arXiv:2012.09663 .
  25. J. M. Renes, Quantum Information Theory (De Gruyter Oldenbourg, Berlin, Boston, 2022).
  26. A. Uhlmann, Reports on Mathematical Physics 9, 273 (1976).
  27. X. Wang, C.-S. Yu, and X. Yi, Physics Letters A 373, 58 (2008).
  28. Y. Guo and S. Yang,   (2023b), arXiv:2312.02854 [quant-ph] .
Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com