Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 28 tok/s
GPT-5 High 35 tok/s Pro
GPT-4o 94 tok/s
GPT OSS 120B 476 tok/s Pro
Kimi K2 190 tok/s Pro
2000 character limit reached

Efficient description of many-body systems with Matrix Product Density Operators (2003.12418v1)

Published 27 Mar 2020 in quant-ph and cond-mat.str-el

Abstract: Matrix Product States form the basis of powerful simulation methods for ground state problems in one dimension. Their power stems from the fact that they faithfully approximate states with a low amount of entanglement, the "area law". In this work, we establish the mixed state analogue of this result: We show that one-dimensional mixed states with a low amount of entanglement, quantified by the entanglement of purification, can be efficiently approximated by Matrix Product Density Operators (MPDOs). In combination with results establishing area laws for thermal states, this helps to put the use of MPDOs in the simulation of thermal states on a formal footing.

Citations (21)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.