Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 40 tok/s
GPT-5 High 38 tok/s Pro
GPT-4o 101 tok/s
GPT OSS 120B 470 tok/s Pro
Kimi K2 161 tok/s Pro
2000 character limit reached

Exact renormalization group flow for matrix product density operators (2410.22696v1)

Published 30 Oct 2024 in quant-ph, cond-mat.stat-mech, and cond-mat.str-el

Abstract: Matrix product density operator (MPDO) provides an efficient tensor network representation of mixed states on one-dimensional quantum many-body systems. We study a real-space renormalization group transformation of MPDOs represented by a circuit of local quantum channels. We require that the renormalization group flow is exact, in the sense that it exactly preserves the correlation between the coarse-grained sites and is therefore invertible by another circuit of local quantum channels. Unlike matrix product states (MPS), which always have a well-defined isometric renormalization transformation, we show that general MPDOs do not necessarily admit a converging exact renormalization group flow. We then introduce a subclass of MPDOs with a well-defined renormalization group flow, and show the structure of the MPDOs in the subclass as a representation of a pre-bialgebra structure. As a result, such MPDOs obey generalized symmetry represented by matrix product operator algebras associated with the pre-bialgebra. We also discuss implications with the classification of mixed-state quantum phases.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (22)
  1. S. R. White, Phys. Rev. Lett. 69, 2863 (1992).
  2. S. Östlund and S. Rommer, Phys. Rev. Lett. 75, 3537 (1995).
  3. M. B. Hastings, J. Stat. Mech.: Theory Exp. 2007, P08024 (2007).
  4. M. B. Hastings and X.-G. Wen, Phys. Rev. B 72, 045141 (2005).
  5. M. B. Hastings, Phys. Rev. Lett. 107, 210501 (2011).
  6. R. König and F. Pastawski, Phys. Rev. B 90 (2014), 10.1103/physrevb.90.045101.
  7. A. Coser and D. Pérez-García, Quantum 3, 174 (2019).
  8. M. B. Hastings, Phys. Rev. B 73, 085115 (2006).
  9. M. Koashi and N. Imoto, Phys. Rev. A 66, 022318 (2002).
  10. K. Kato, arXiv:2309.07434 [quant-ph] .
  11. R. A. Fisher, Philos. Trans. R. Soc. Lond. A 222, 309 (1922).
  12. T. M. Cover and J. A. Thomas, Elements of Information Theory 2nd Edition (Wiley Series in Telecommunications and Signal Processing) (Wiley-Interscience, 2006).
  13. D. Petz, Commun. Math. Phys. 105, 123 (1986).
  14. D. Petz, Q. J. Math. 39, 97 (1988).
  15. B. Schumacher, Phys. Rev. A 51, 2738 (1995).
  16. M. Mosonyi and D. Petz, Lett. Math. Phys. 68, 19 (2004).
  17. A. Jenčová and D. Petz, Commun. Math. Phys. 263, 259 (2006).
  18. When we speak about the minimal sufficient subalgebra for a partition A⁢B⁢ΛL𝐴𝐵subscriptΛ𝐿AB~{}\Lambda_{L}italic_A italic_B roman_Λ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT, we implicitly assume that ℋBsubscriptℋ𝐵{\mathcal{H}}_{B}caligraphic_H start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT is restricted to supp⁢(ρB)suppsubscript𝜌𝐵{\rm supp}(\rho_{B})roman_supp ( italic_ρ start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT ) so that ρB>0subscript𝜌𝐵0\rho_{B}>0italic_ρ start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT > 0.
  19. M. S. Leifer and D. Poulin, Ann. Phys. (N. Y.) 323, 1899 (2008).
  20. W. Brown and D. Poulin, arXiv:1206.0755 [quant-ph] .
  21. D. Perez-Garcia, private communication  (2024).
  22. M. Levin and C. P. Nave, Phys. Rev. Lett. 99 (2007), 10.1103/physrevlett.99.120601.
Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

X Twitter Logo Streamline Icon: https://streamlinehq.com