Papers
Topics
Authors
Recent
2000 character limit reached

PosSLP and Sum of Squares (2403.00115v1)

Published 29 Feb 2024 in cs.CC and cs.DM

Abstract: The problem PosSLP is the problem of determining whether a given straight-line program (SLP) computes a positive integer. PosSLP was introduced by Allender et al. to study the complexity of numerical analysis (Allender et al., 2009). PosSLP can also be reformulated as the problem of deciding whether the integer computed by a given SLP can be expressed as the sum of squares of four integers, based on the well-known result by Lagrange in 1770, which demonstrated that every natural number can be represented as the sum of four non-negative integer squares. In this paper, we explore several natural extensions of this problem by investigating whether the positive integer computed by a given SLP can be written as the sum of squares of two or three integers. We delve into the complexity of these variations and demonstrate relations between the complexity of the original PosSLP problem and the complexity of these related problems. Additionally, we introduce a new intriguing problem called Div2SLP and illustrate how Div2SLP is connected to DegSLP and the problem of whether an SLP computes an integer expressible as the sum of three squares. By comprehending the connections between these problems, our results offer a deeper understanding of decision problems associated with SLPs and open avenues for further exciting research

Definition Search Book Streamline Icon: https://streamlinehq.com
References (32)
  1. On the complexity of numerical analysis. SIAM Journal on Computing, 38(5):1987–2006, 2009.
  2. Time-space tradeoffs in the counting hierarchy. In Proceedings of the 16th Annual IEEE Conference on Computational Complexity, Chicago, Illinois, USA, June 18-21, 2001, pages 295–302. IEEE Computer Society, 2001.
  3. N. C. Ankeny. Sums of three squares. Proceedings of the American Mathematical Society, 8(2):316–319, 1957.
  4. Counting complexity classes for numeric computations ii: Algebraic and semialgebraic sets. Journal of Complexity, 22(2):147–191, 2006.
  5. Complexity and Real Computation. Springer-Verlag, Berlin, Heidelberg, 1997.
  6. On the hardness of posslp, 2023.
  7. A bound on the minimum of a real positive polynomial over the standard simplex, 2009.
  8. R. Breusch. Zur verallgemeinerung des bertrandschen postulates, dass zwischen x und 2x stets primzahlen liegen. Mathematische Zeitschrift, 34:505–526, 1932.
  9. Arithmetic Circuit Complexity of Division and Truncation. In Valentine Kabanets, editor, 36th Computational Complexity Conference (CCC 2021), volume 200 of Leibniz International Proceedings in Informatics (LIPIcs), pages 25:1–25:36, Dagstuhl, Germany, 2021. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.
  10. Discovering the roots: Uniform closure results for algebraic classes under factoring. In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018, page 1152–1165, New York, NY, USA, 2018. Association for Computing Machinery.
  11. U. Dudley. Elementary Number Theory: Second Edition. Dover Books on Mathematics. Dover Publications, 2012.
  12. Bounds for hilbert’s irreducibility theorem. Pure and Applied Mathematics Quarterly, 4(4):1059–1083, 2008.
  13. Landau Edmund. Über die darstellung definiter funktionen durch quadrate. Mathematische Annalen, 62:272–285, 1906.
  14. C.F. Gauss. Disquisitiones arithmeticae. Apud G. Fleischer, 1801.
  15. David R. Hilbert. Beweis für die darstellbarkeit der ganzen zahlen durch eine feste anzahlnter potenzen (waringsches problem). Mathematische Annalen, 67:281–300, 1909.
  16. On the order of power series and the sum of square roots problem. In Proceedings of the 2023 International Symposium on Symbolic and Algebraic Computation, ISSAC ’23, page 354–362, New York, NY, USA, 2023. Association for Computing Machinery.
  17. E. Kaltofen. Single-factor hensel lifting and its application to the straight-line complexity of certain polynomials. In Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing, STOC ’87, page 443–452, New York, NY, USA, 1987. Association for Computing Machinery.
  18. Alexei Kourbatov. On the distribution of maximal gaps between primes in residue classes, 2018.
  19. Equivalence of polynomial identity testing and deterministic multivariate polynomial factorization. In 2014 IEEE 29th Conference on Computational Complexity (CCC), pages 169–180. IEEE, 2014.
  20. Edmund Landau. Über die Einteilung der positiven ganzen Zahlen in vier Klassen nach der Mindestzahl der zu ihrer additiven Zusammensetzung erforderliche Quadrate. [s.n.] [S.l.], [S.l.], 1908.
  21. E. Landau. Über die Einteilung der positiven ganzen Zahlen in vier Klassen nach der Mindestzahl der zu ihrer additiven Zusammensetzung erforderlichen Quadrate. 1909.
  22. Adrien Marie Legendre. Essai Sur La Théorie Des Nombres. Duprat, 1797.
  23. Gregorio Malajovich. An effective version of kronecker’s theorem on simultaneous diophantine approximation. Technical report, Citeseer, 1996.
  24. LJ Mordell. On the representation of a number as a sum of three squares. Rev. Math. Pures Appl, 3:25–27, 1958.
  25. M Ram Murty. Polynomials assuming square values. Number theory and discrete geometry, pages 155–163, 2008.
  26. An Introduction to the Theory of Numbers. Wiley, hardcover edition, 1 1991.
  27. Real roots of univariate polynomials and straight line programs. Journal of Discrete Algorithms, 5(3):471–478, 2007. Selected papers from Ad Hoc Now 2005.
  28. Walter L. Ruzzo. On uniform circuit complexity. J. Comput. Syst. Sci., 22(3):365–383, 1981.
  29. Yaroslav Shitov. How hard is the tensor rank?, 2016.
  30. Prasoon Tiwari. A problem that is easier to solve on the unit-cost algebraic ram. Journal of Complexity, 8(4):393–397, 1992.
  31. Yann Walkowiak. Théorème d’irréductibilité de hilbert effectif. Acta Arithmetica, 116(4):343–362, 2005.
  32. Pourchet Y. Sur la représentation en somme de carrés des polynômes à une indéterminée sur un corps de nombres algébriques. Acta Arithmetica, 19(1):89–104, 1971.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.