Agnostic Phase Estimation (2403.00054v3)
Abstract: The goal of quantum metrology is to improve measurements' sensitivities by harnessing quantum resources. Metrologists often aim to maximize the quantum Fisher information, which bounds the measurement setup's sensitivity. In studies of fundamental limits on metrology, a paradigmatic setup features a qubit (spin-half system) subject to an unknown rotation. One obtains the maximal quantum Fisher information about the rotation if the spin begins in a state that maximizes the variance of the rotation-inducing operator. If the rotation axis is unknown, however, no optimal single-qubit sensor can be prepared. Inspired by simulations of closed timelike curves, we circumvent this limitation. We obtain the maximum quantum Fisher information about a rotation angle, regardless of the unknown rotation axis. To achieve this result, we initially entangle the probe qubit with an ancilla qubit. Then, we measure the pair in an entangled basis, obtaining more information about the rotation angle than any single-qubit sensor can achieve. We demonstrate this metrological advantage using a two-qubit superconducting quantum processor. Our measurement approach achieves a quantum advantage, outperforming every entanglement-free strategy.
- S. L. Braunstein and C. M. Caves, Statistical distance and the geometry of quantum states, Phys. Rev. Lett. 72, 3439 (1994a).
- V. Giovannetti, S. Lloyd, and L. Maccone, Quantum metrology, Physical review letters 96, 010401 (2006a).
- V. Giovannetti, S. Lloyd, and L. Maccone, Advances in quantum metrology, Nature photonics 5, 222 (2011a).
- A. Y. Kitaev, (1995), arXiv:quant-ph/9511026 .
- I. L. Chuang and M. A. Nielsen, Prescription for experimental determination of the dynamics of a quantum black box, Journal of Modern Optics 44, 2455 (1997), https://www.tandfonline.com/doi/pdf/10.1080/09500349708231894 .
- G. M. D’Ariano and P. Lo Presti, Quantum tomography for measuring experimentally the matrix elements of an arbitrary quantum operation, Phys. Rev. Lett. 86, 4195 (2001a).
- X. Song, M. Naghiloo, and K. Murch, Quantum process inference for a single-qubit maxwell demon, Physical Review A 104, 10.1103/physreva.104.022211 (2021).
- D. R. M. Arvidsson-Shukur, A. G. McConnell, and N. Yunger Halpern, Nonclassical advantage in metrology established via quantum simulations of hypothetical closed timelike curves, Phys. Rev. Lett. 131, 150202 (2023).
- K. Gödel, An example of a new type of cosmological solutions of einstein’s field equations of gravitation, Rev. Mod. Phys. 21, 447 (1949).
- C. H. Bennett, in Proceedings of QUPON (Wien, 2005).
- G. Svetlichny, Time travel: Deutsch vs. teleportation, International Journal of Theoretical Physics 50, 3903 (2011).
- C. W. Helstrom, Quantum Detection and Estimation Theory, Vol. 123 (Elsevier, 1976) 1st Edition.
- T. A. Brun and M. M. Wilde, Simulations of closed timelike curves, Foundations of Physics 47, 375 (2017).
- J.-M. A. Allen, Treating time travel quantum mechanically, Phys. Rev. A 90, 042107 (2014).
- J. H. Jenne and D. R. M. Arvidsson-Shukur, Unbounded and lossless compression of multiparameter quantum information, Phys. Rev. A 106, 042404 (2022).
- The FI’s weak sinusoidal variation results from experimental imperfections.
- G. M. D’Ariano and P. Lo Presti, Quantum tomography for measuring experimentally the matrix elements of an arbitrary quantum operation, Phys. Rev. Lett. 86, 4195 (2001b).
- C. L. Degen, F. Reinhard, and P. Cappellaro, Quantum sensing, Rev. Mod. Phys. 89, 035002 (2017).
- T. Rudolph and L. Grover, Quantum communication complexity of establishing a shared reference frame, Phys. Rev. Lett. 91, 217905 (2003).
- J. G. Smith, C. H. W. Barnes, and D. R. M. Arvidsson-Shukur, Iterative quantum-phase-estimation protocol for shallow circuits, Phys. Rev. A 106, 062615 (2022).
- J. G. Smith, C. H. W. Barnes, and D. R. M. Arvidsson-Shukur, An adaptive bayesian quantum algorithm for phase estimation (2023), arXiv:2303.01517 [quant-ph] .
- J. Harris, R. W. Boyd, and J. S. Lundeen, Weak value amplification can outperform conventional measurement in the presence of detector saturation, Phys. Rev. Lett. 118, 070802 (2017).
- S. Pang, J. Dressel, and T. A. Brun, Entanglement-assisted weak value amplification, Phys. Rev. Lett. 113, 030401 (2014a).
- Y. Aharonov, D. Z. Albert, and L. Vaidman, How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100, Phys. Rev. Lett. 60, 1351 (1988).
- I. M. Duck, P. M. Stevenson, and E. C. G. Sudarshan, The sense in which a ”weak measurement” of a spin-1/2 particle’s spin component yields a value 100, Phys. Rev. D 40, 2112 (1989).
- O. Hosten and P. Kwiat, Observation of the spin hall effect of light via weak measurements, Science 319, 787 (2008), https://www.science.org/doi/pdf/10.1126/science.1152697 .
- M. Boissonneault, J. M. Gambetta, and A. Blais, Dispersive regime of circuit qed: Photon-dependent qubit dephasing and relaxation rates, Physical Review A 79, 10.1103/physreva.79.013819 (2009).
- J. Rapin and O. Teytaud, Nevergrad - A gradient-free optimization platform, https://GitHub.com/FacebookResearch/Nevergrad (2018).
- M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information: 10th Anniversary Edition (Cambridge University Press, 2012).
- M. G. A. Paris, Quantum estimation for quantum technology, Int. J. Quantum Inf. 7, 125 (2009).
- V. Giovannetti, S. Lloyd, and L. Maccone, Advances in quantum metrology, Nat. Photon. 5, 222 (2011b).
- V. Giovannetti, S. Lloyd, and L. Maccone, Quantum metrology, Phys. Rev. Lett. 96, 010401 (2006b).
- H. Cramer, Mathematical Methods of Statistics (Princeton University Press, 1999).
- S. L. Braunstein and C. M. Caves, Statistical distance and the geometry of quantum states, Phys. Rev. Lett. 72, 3439 (1994b).
- A. Fujiwara and H. Nagaoka, Quantum Fisher metric and estimation for pure state models, Phys. Lett. A 201, 119 (1995).
- C. W. Helstrom, Quantum detection and estimation theory, J. Stat. Phys. 1, 231 (1969).
- H. Zhu, Information complementarity: A new paradigm for decoding quantum incompatibility, Scientific Reports 5, 14317 (2015).
- T. Heinosaari, T. Miyadera, and M. Ziman, An invitation to quantum incompatibility, Journal of Physics A: Mathematical and Theoretical 49, 123001 (2016).
- S. Ragy, M. Jarzyna, and R. Demkowicz-Dobrzański, Compatibility in multiparameter quantum metrology, Physical Review A 94, 052108 (2016).
- A. Z. Goldberg, L. L. Sánchez-Soto, and H. Ferretti, Intrinsic sensitivity limits for multiparameter quantum metrology, Phys. Rev. Lett. 127, 110501 (2021).
- A. Fujiwara, Quantum channel identification problem, Phys. Rev. A 63, 042304 (2001).
- S. Pang, J. Dressel, and T. A. Brun, Entanglement-assisted weak value amplification, Phys. Rev. Lett. 113, 030401 (2014b).
- S. Pang and T. A. Brun, Improving the precision of weak measurements by postselection measurement, Phys. Rev. Lett. 115, 120401 (2015).
- S. Alipour and A. T. Rezakhani, Extended convexity of quantum fisher information in quantum metrology, Phys. Rev. A 91, 042104 (2015).
- J. Gallier, Notes on the schur complement (2010).
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.