Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

UniVS: Unified and Universal Video Segmentation with Prompts as Queries (2402.18115v2)

Published 28 Feb 2024 in cs.CV and cs.CL

Abstract: Despite the recent advances in unified image segmentation (IS), developing a unified video segmentation (VS) model remains a challenge. This is mainly because generic category-specified VS tasks need to detect all objects and track them across consecutive frames, while prompt-guided VS tasks require re-identifying the target with visual/text prompts throughout the entire video, making it hard to handle the different tasks with the same architecture. We make an attempt to address these issues and present a novel unified VS architecture, namely UniVS, by using prompts as queries. UniVS averages the prompt features of the target from previous frames as its initial query to explicitly decode masks, and introduces a target-wise prompt cross-attention layer in the mask decoder to integrate prompt features in the memory pool. By taking the predicted masks of entities from previous frames as their visual prompts, UniVS converts different VS tasks into prompt-guided target segmentation, eliminating the heuristic inter-frame matching process. Our framework not only unifies the different VS tasks but also naturally achieves universal training and testing, ensuring robust performance across different scenarios. UniVS shows a commendable balance between performance and universality on 10 challenging VS benchmarks, covering video instance, semantic, panoptic, object, and referring segmentation tasks. Code can be found at \url{https://github.com/MinghanLi/UniVS}.

Citations (10)

Summary

We haven't generated a summary for this paper yet.